A323244 a(1) = 0; and for n > 1, a(n) = A033879(A156552(n)).
0, 1, 1, 2, 1, 4, 1, 6, 0, 5, 1, 10, 1, 16, 2, 6, 1, 12, 1, 18, -3, 18, 1, 22, -4, 46, 4, 22, 1, 10, 1, 30, 14, 82, -2, 14, 1, 256, -12, 22, 1, 36, 1, 66, 8, 226, 1, 46, -12, 19, 8, 130, 1, 28, -19, 70, -12, 748, 1, 42, 1, 1362, 16, 22, 10, 42, 1, 214, 254, 40, 1, 38, 1, 3838, 10, 406, -10, 106, 1, 78, -12, 5458, 1, 26, -72, 12250, -348, 30, 1, 12
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Crossrefs
Cf. A000043, A000396, A033879, A064989, A156552, A297112, A323240, A323243, A323245, A323248, A324115, A324051, A324103, A324396, A324398, A324543, A324713.
Cf. A324201 (positions of zeros, conjectured), A324551 (of negative terms), A324720 (of nonnegative terms), A324721 (of positive terms), A324731, A324732.
Cf. A329644 (Möbius transform).
Programs
-
Mathematica
Array[2 # - If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 90] (* Michael De Vlieger, Apr 21 2019 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k));
-
Python
from sympy import divisor_sigma, primepi, factorint def A323244(n): return (lambda n: (n<<1)-divisor_sigma(n))(sum((1<
1 else 0 # Chai Wah Wu, Mar 10 2023
Formula
From Antti Karttunen, Mar 12 2019 & Nov 23 2019: (Start)
(End)
Comments