cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A323249 Sequence lists numbers k > 1 such that k^2 == d(k) (mod sigma(k)), where d = A000005 and sigma = A000203.

Original entry on oeis.org

8, 9, 14, 26, 38, 62, 74, 86, 122, 134, 146, 158, 194, 206, 218, 254, 278, 302, 314, 326, 362, 386, 398, 422, 446, 458, 482, 542, 554, 566, 614, 626, 662, 674, 698, 734, 746, 758, 794, 818, 842, 866, 878, 914, 926, 974, 998, 1046, 1082, 1094, 1142, 1154, 1202, 1214
Offset: 1

Views

Author

Paolo P. Lava, Jan 08 2019

Keywords

Comments

A112772 is a subsequence. After 8 and 9, the following numbers not in A112772 are 5438, 5462, 5504, 11096, ...

Examples

			sigma(8) = 15 and 8^2 mod 15 = 4 = d(8).
		

Crossrefs

Programs

  • Maple
    with(numtheory): op(select(n->n^2 mod sigma(n)=tau(n),[$1..1214]));
  • Mathematica
    Select[Range[1225], PowerMod[#1, 2, #3] == #2 & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    for(k=1, 2000, x=sigma(k); if(Mod(k,x)^2==Mod(numdiv(k), x), print1(k, ", "))) \\ Jinyuan Wang, Feb 03 2019

Formula

Solutions of k^2 mod sigma(k) = d(k).

A323251 Sequence lists numbers k > 1 such that k^4 == d(k) (mod sigma(k)), where d = A000005 and sigma = A000203.

Original entry on oeis.org

22, 80, 625, 1664, 2392, 4030, 5434, 5830, 6118, 6536, 9614, 11438, 12958, 13184, 15064, 15314, 17528, 18632, 18970, 22570, 23254, 25234, 29810, 32128, 33784, 34846, 36938, 37910, 40610, 43054, 46664, 52936, 53354, 58102, 58646, 60298, 79378, 79864, 83266, 92302, 93056
Offset: 1

Views

Author

Paolo P. Lava, Jan 08 2019

Keywords

Examples

			sigma(22) = 36 and 22^4 mod 36 = 4 = d(22).
		

Crossrefs

Programs

  • Maple
    with(numtheory): op(select(n->n^4 mod sigma(n)=tau(n),[$1..92302]));
  • Mathematica
    Select[Range[10^5], PowerMod[#1, 4, #3] == #2 & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    for(k=1, 10^5, x=sigma(k); if(Mod(k, x)^4==Mod(numdiv(k), x), print1(k, ", "))) \\ Jinyuan Wang, Feb 03 2019

Formula

Solutions of k^4 mod sigma(k) = d(k).
Showing 1-2 of 2 results.