A323255 The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 2*n - 1, n - 1, ..., 1 and whose first column consists of 2*n - 1, 2*n - 2, ..., n.
1, 1, 11, 248, 9968, 638772, 60061657, 7798036000, 1336715859150, 292406145227392, 79483340339739367, 26280500564448081664, 10386012861097225139356, 4834639222955142417477888, 2618110215141486526589786501, 1631888040186649673361825042432, 1159983453675106278249250918734938
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 1 with permanent a(1) = 1. For n = 2 the matrix M(2) is 3, 1 2, 3 with permanent a(2) = 11. For n = 3 the matrix M(3) is 5, 2, 1 4, 5, 2 3, 4, 5 with permanent a(3) = 248.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..35
- Wikipedia, Toeplitz matrix
Crossrefs
Programs
-
Mathematica
b[i_]:=i; a[n_]:=If[n==0, 1, Permanent[ToeplitzMatrix[Join[{b[2*n-1]}, Array[b, n-1, {2*n-2,n }]], Join[{b[2*n-1]},Array[b, n-1, {n-1,1}]]]]]; Array[a, 16, 0]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (j==1, 2*n-i, n-j+1))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;} a(n) = matpermanent(tm(n)); \\ Stefano Spezia, Dec 11 2019
Extensions
a(0) = 1 prepended by Stefano Spezia, Dec 08 2019
Comments