cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323277 G.f. = (x/6)*( 1/(1-12*x)^(3/2) - 1/(1-12*x) ).

Original entry on oeis.org

0, 0, 1, 21, 342, 5049, 70794, 961794, 12792492, 167583249, 2170496898, 27864238950, 355198394484, 4501897295274, 56786420175588, 713416451137956, 8931958558413912, 111495926008783809, 1388178160043508018, 17244120146466623166, 213776181450214477092, 2645421031806169214574
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2019

Keywords

Programs

  • Mathematica
    a[n_] := (2^(2n-3) 3^(n-2) ((2n-1)!!/2^(n-1) - (n-1)!))/(n-1)!; a[0] = 0;
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2019 *)
    CoefficientList[Series[x/6 (1/(1-12x)^(3/2)-1/(1-12x)),{x,0,30}],x] (* Harvey P. Dale, Jun 18 2021 *)

Formula

(-n+1)*a(n) +6*(4*n-5)*a(n-1) +72*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jan 17 2019
a(n) = A115903(n-1)/6 - 2*A001021(n-2), n>1. - R. J. Mathar, Jan 17 2019
a(n) = (2^(2*n-3)*3^(n-2)*((2*n-1)!!/2^(n-1) - (n-1)!))/(n-1)!, n>0. - Jean-François Alcover, Feb 14 2019