cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323278 Numbers of the form p^2-1 that have a record-breaking number of divisors, where p is prime.

Original entry on oeis.org

3, 8, 24, 48, 120, 288, 360, 840, 1680, 5040, 11880, 32760, 143640, 201600, 491400, 776160, 2042040, 3500640, 7447440, 9480240, 17297280, 34234200, 143256960, 514337040, 555120720, 569729160, 1656408600, 4283571600, 8148853440, 10951831800, 35415099720, 51437786400
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 11 2019

Keywords

Comments

a(11)-a(26) from Chuck Gaydos.

Examples

			a(7) = 360 because 360 has a record-breaking 24 divisors and 360 = p^2-1, where p = 19 is prime.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Prime[Range[10^5]]^2 - 1, t}, t = DivisorSigma[0, s]; Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    lista(nn) = {my(m = 0, p = 2, np); for (n=1, nn, np = p^2-1; if (((nd = numdiv(np)) > m), print1(np, ", "); m = nd); p = nextprime(p+1););} \\ Michel Marcus, Jan 12 2019
    
  • Python
    from sympy import divisor_count, nextprime
    A323278_list, p, nmax = [], 2 , -1
    while len(A323278_list) < 100:
        n = divisor_count(p**2-1)
        if n > nmax:
            nmax = n
            A323278_list.append(p**2-1)
        p = nextprime(p) # Chai Wah Wu, Feb 09 2019

Extensions

a(27)-a(32) from Daniel Suteu, Jan 12 2019