cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323298 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 150, 1815, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to cover more than 7 vertices is with edges all having a single common vertex. For the special cases of n = 6 or n = 7, there are also covers without a common vertex. - Andrew Howroyd, Aug 15 2019

Examples

			The a(5) = 15 hypergraphs:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
The following are non-isomorphic representatives of the 5 unlabeled 3-uniform hypergraphs spanning 7 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 1815.
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
From _Andrew Howroyd_, Aug 15 2019: (Start)
The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypergraphs spanning 6 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 150.
    120 X {{1,2,3},{1,4,5},{3,5,6}}
     30 X {{1,2,3},{1,4,5},{3,5,6},{2,4,6}}
(End)
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    a(n)={if(n%2, if(n<=3, n==3, if(n==7, 1815, n!/(2^(n\2)*(n\2)!))), if(n==6, 150, n==0))} \\ Andrew Howroyd, Aug 15 2019

Formula

a(2*n) = 0 for n > 3; a(2*n-1) = A001147(n) for n > 4. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 15 2019