A323300 Number of ways to fill a matrix with the parts of the integer partition with Heinz number n.
1, 1, 1, 2, 1, 4, 1, 2, 2, 4, 1, 6, 1, 4, 4, 3, 1, 6, 1, 6, 4, 4, 1, 12, 2, 4, 2, 6, 1, 12, 1, 2, 4, 4, 4, 18, 1, 4, 4, 12, 1, 12, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 12, 4, 12, 4, 4, 1, 36, 1, 4, 6, 4, 4, 12, 1, 6, 4, 12, 1, 20, 1, 4, 6, 6, 4, 12, 1, 10, 3, 4
Offset: 1
Keywords
Examples
The a(24) = 12 matrices whose entries are (2,1,1,1): [1 1 1 2] [1 1 2 1] [1 2 1 1] [2 1 1 1] . [1 1] [1 1] [1 2] [2 1] [1 2] [2 1] [1 1] [1 1] . [1] [1] [1] [2] [1] [1] [2] [1] [1] [2] [1] [1] [2] [1] [1] [1]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; Array[Length[ptnmats[#]]&,100]
Comments