cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323300 Number of ways to fill a matrix with the parts of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 2, 2, 4, 1, 6, 1, 4, 4, 3, 1, 6, 1, 6, 4, 4, 1, 12, 2, 4, 2, 6, 1, 12, 1, 2, 4, 4, 4, 18, 1, 4, 4, 12, 1, 12, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 12, 4, 12, 4, 4, 1, 36, 1, 4, 6, 4, 4, 12, 1, 6, 4, 12, 1, 20, 1, 4, 6, 6, 4, 12, 1, 10, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(24) = 12 matrices whose entries are (2,1,1,1):
  [1 1 1 2] [1 1 2 1] [1 2 1 1] [2 1 1 1]
.
  [1 1] [1 1] [1 2] [2 1]
  [1 2] [2 1] [1 1] [1 1]
.
  [1] [1] [1] [2]
  [1] [1] [2] [1]
  [1] [2] [1] [1]
  [2] [1] [1] [1]
		

Crossrefs

Positions of 1's are one and prime numbers A008578.
Positions of 2's are primes to prime powers A053810.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Array[Length[ptnmats[#]]&,100]

Formula

a(n) = A008480(n) * A000005(A001222(n)).