A323301 Number of ways to fill a matrix with the parts of a strict integer partition of n.
1, 1, 1, 5, 5, 9, 21, 25, 37, 53, 137, 153, 249, 337, 505, 845, 1085, 1497, 2061, 2785, 3661, 7589, 8849, 13329, 18033, 26017, 34225, 48773, 70805, 91977, 123765, 164761, 216373, 283205, 367913, 470889, 758793, 913825, 1264105, 1651613, 2251709, 2894793, 3927837
Offset: 0
Keywords
Examples
The a(6) = 21 matrices: [6] [1 5] [5 1] [2 4] [4 2] [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1] . [1] [5] [2] [4] [5] [1] [4] [2] . [1] [1] [2] [2] [3] [3] [2] [3] [1] [3] [1] [2] [3] [2] [3] [1] [2] [1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, t!*numtheory[tau](t), b(n, i-1, t)+b(n-i, min(n-i, i-1), t+1))) end: a:= n-> `if`(n=0, 1, b(n$2, 0)): seq(a(n), n=0..50); # Alois P. Heinz, Jan 15 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; Table[Sum[Length[ptnmats[k]],{k,Select[Times@@Prime/@#&/@IntegerPartitions[n],SquareFreeQ]}],{n,20}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, t!*DivisorSigma[0, t], b[n, i - 1, t] + b[n - i, Min[n - i, i - 1], t + 1]]]; a[n_] := If[n == 0, 1, b[n, n, 0]]; a /@ Range[0, 50] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
Formula
a(n) = Sum_{y1 + ... + yk = n, y1 > ... > yk} k! * A000005(k) for n > 0, a(0) = 1.
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 15 2019