A323302 Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums.
1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1): [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1] [3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3] . [1 3] [1 3] [2 2] [2 2] [3 1] [3 1] [2 2] [3 1] [1 3] [3 1] [1 3] [2 2] [3 1] [2 2] [3 1] [1 3] [2 2] [1 3]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; Table[Length[Select[ptnmats[n],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{n,100}]
Comments