cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323306 Heinz numbers of integer partitions that can be arranged into a matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

First differs from A137944 in lacking 120.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			6480 belongs to the sequence because it is the Heinz number of (3,2,2,2,2,1,1,1,1), which can be arranged in the following ways:
  [1 1 3] [1 2 2] [1 2 2] [1 3 1] [2 1 2] [2 1 2] [2 2 1] [2 2 1] [3 1 1]
  [2 2 1] [1 2 2] [3 1 1] [2 1 2] [1 3 1] [2 1 2] [1 1 3] [2 2 1] [1 2 2]
  [2 2 1] [3 1 1] [1 2 2] [2 1 2] [2 1 2] [1 3 1] [2 2 1] [1 1 3] [1 2 2]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Select[Range[100],!Select[ptnmats[#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]

A323347 Number of integer partitions of n whose parts can be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 6, 2, 11, 2, 7, 7, 10, 2, 18, 2, 17, 13, 9, 2, 50, 3, 10, 24, 34, 2, 85, 2, 51, 46, 12, 9, 261, 2, 13, 80, 257, 2, 258, 2, 323, 431, 15, 2, 1533, 3, 227, 206, 1165, 2, 971, 483, 2409, 309, 18, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

Rectangles must be of size m X k where m, k are divisors of n and mk <= n. This implies that a(p) = 2 for p prime, since the only allowable rectangles must be of size 1 X 1 corresponding to the partition (p), or 1 X p or p X 1 corresponding to the partition (1,1,...,1). Similarly, a(p^2) = 3 since the allowable rectangles must be of sizes 1 X 1 (partition (p^2)), 1 X p or p X 1 (partition (p,p,...,p)), 1 X p^2, p^2 X 1 and p X p (partition (1,1,...,1)). - Chai Wah Wu, Jan 14 2019

Examples

			The a(8) = 5 integer partitions are (8), (44), (2222), (3311), (11111111).
The a(12) = 11 integer partitions (C = 12):
  (C)
  (66)
  (444)
  (3333)
  (4422)
  (5511)
  (222222)
  (332211)
  (22221111)
  (222111111)
  (111111111111)
For example, the arrangements of (222111111) are:
  [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
  [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
  [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[IntegerPartitions[n],!Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]

Formula

a(p) = 2 and a(p^2) = 3 for p prime (see comment). - Chai Wah Wu, Jan 14 2019

Extensions

a(17)-a(53) from Chai Wah Wu, Jan 15 2019
a(54)-a(59) from Chai Wah Wu, Jan 16 2019

A323348 Number of integer partitions of n whose parts cannot be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 13, 17, 27, 36, 54, 66, 99, 128, 169, 221, 295, 367, 488, 610, 779, 993, 1253, 1525, 1955, 2426, 2986, 3684, 4563, 5519, 6840, 8298, 10097, 12298, 14874, 17716, 21635, 26002, 31105, 37081, 44581, 52916, 63259, 74852, 88703, 105543, 124752, 145740, 173522, 203999, 239737, 280424, 329929
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Examples

			The a(8) = 17 integer partitions:
  (53), (62), (71),
  (332), (422), (431), (521), (611),
  (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]

Extensions

a(17)-a(53) from Chai Wah Wu, Jan 15 2019

A325411 Numbers whose omega-sequence has repeated parts.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

First differs from A323304 in lacking 216. First differs from A106543 in having 144.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose omega-sequence has repeated parts. The enumeration of these partitions by sum is given by A325285.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), which has repeated parts, so 180 is in the sequence.

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       51: 2 2 1         86: 2 2 1        119: 2 2 1
  10: 2 2 1       52: 3 2 2 1       87: 2 2 1        120: 5 3 2 2 1
  12: 3 2 2 1     54: 4 2 2 1       88: 4 2 2 1      122: 2 2 1
  14: 2 2 1       55: 2 2 1         90: 4 3 2 2 1    123: 2 2 1
  15: 2 2 1       56: 4 2 2 1       91: 2 2 1        124: 3 2 2 1
  18: 3 2 2 1     57: 2 2 1         92: 3 2 2 1      126: 4 3 2 2 1
  20: 3 2 2 1     58: 2 2 1         93: 2 2 1        129: 2 2 1
  21: 2 2 1       60: 4 3 2 2 1     94: 2 2 1        130: 3 3 1
  22: 2 2 1       62: 2 2 1         95: 2 2 1        132: 4 3 2 2 1
  24: 4 2 2 1     63: 3 2 2 1       96: 6 2 2 1      133: 2 2 1
  26: 2 2 1       65: 2 2 1         98: 3 2 2 1      134: 2 2 1
  28: 3 2 2 1     66: 3 3 1         99: 3 2 2 1      135: 4 2 2 1
  30: 3 3 1       68: 3 2 2 1      102: 3 3 1        136: 4 2 2 1
  33: 2 2 1       69: 2 2 1        104: 4 2 2 1      138: 3 3 1
  34: 2 2 1       70: 3 3 1        105: 3 3 1        140: 4 3 2 2 1
  35: 2 2 1       72: 5 2 2 1      106: 2 2 1        141: 2 2 1
  38: 2 2 1       74: 2 2 1        108: 5 2 2 1      142: 2 2 1
  39: 2 2 1       75: 3 2 2 1      110: 3 3 1        143: 2 2 1
  40: 4 2 2 1     76: 3 2 2 1      111: 2 2 1        144: 6 2 2 1
  42: 3 3 1       77: 2 2 1        112: 5 2 2 1      145: 2 2 1
  44: 3 2 2 1     78: 3 3 1        114: 3 3 1        146: 2 2 1
  45: 3 2 2 1     80: 5 2 2 1      115: 2 2 1        147: 3 2 2 1
  46: 2 2 1       82: 2 2 1        116: 3 2 2 1      148: 3 2 2 1
  48: 5 2 2 1     84: 4 3 2 2 1    117: 3 2 2 1      150: 4 3 2 2 1
  50: 3 2 2 1     85: 2 2 1        118: 2 2 1        152: 4 2 2 1
		

Crossrefs

Positions of nonsquarefree numbers in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],!UnsameQ@@omseq[#]&]
Showing 1-4 of 4 results.