A323309 The sum of exponential semiproper divisors of n.
1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 66, 65, 66, 67
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Nicusor Minculete, A new class of divisors: the exponential semiproper divisors, Bulletin of the Transilvania University of Brasov, Mathematics, Informatics, Physics, Series III, Vol. 7 No. 1 (2014), pp. 37-46.
Programs
-
Mathematica
f[p_, e_] := If[e==1, p, p^e + p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, if (f[k,2] > 1, f[k,1] += f[k,1]^f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 10 2019
Formula
Multiplicative with a(p^e) = p for e = 1 and p^e + p otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.5628034365... . - Amiram Eldar, Dec 01 2022
Comments