cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323310 List of e-unitary perfect numbers that are not e-semiproper perfect numbers.

Original entry on oeis.org

4769856, 23849280, 52468416, 81087552, 90627264, 109706688, 138325824, 147865536, 176484672, 195564096, 205103808, 224183232, 252802368, 262342080, 281421504, 290961216, 319580352, 338659776, 348199488, 357739200, 376818624, 395898048, 405437760, 424517184
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

The e-unitary perfect numbers are numbers k such that the sum of their exponential unitary divisors (A322857) equals 2k. The e-semiproper perfect numbers are numbers k such that the sum of their exponential semiproper divisors (A323309) equals 2k. Apparently most of the e-unitary perfect numbers are also e-semiproper perfect numbers: The first 41393 e-unitary perfect numbers are also the first 41393 e-semiproper perfect numbers, but the 41394th e-unitary perfect number is 4769856 which is not e-semiproper perfect. This number, which is the first term of this sequence, was found by Minculete.
The powerful (A001694) terms of this sequence are the primitive terms, i.e., if k is a powerful term, then m*k is a term for any squarefree (A005117) number m that is coprime to k. The only primitive terms below 10^18 are 4769856 and 357739200. If S is the sequence of primitive terms, then the asymptotic density of this sequence is Sum_{n>=1} f(S(n)) = 5.235...*10^(-8), where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, May 06 2025

Crossrefs

Programs

  • Mathematica
    fs[p_, e_] := If[e==1, p, p^e + p]; a[1]=1; essigma[n_] := Times @@ fs @@@ FactorInteger[n]; esPerfectQ[n_] := essigma[n]==2n; fu[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#]==1 &]; eusigma[n_] := Times @@ fu @@@ FactorInteger[n]; euPerfectQ[n_] := eusigma[n] == 2n; aQ[n_] := euPerfectQ[n] && !esPerfectQ[n]; Select[Range[1, 10^8], aQ]