cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323308 The number of exponential semiproper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and gcd(d/rad(n), n/d) = 1, where rad(n) is the largest squarefree divisor of n (A007947).
a(n) is also the number of divisors of n that are squares of squarefree numbers (A062503). - Amiram Eldar, Oct 08 2022
a(n) is also the number of unitary divisors of n that are powerful (A001694). - Amiram Eldar, Feb 18 2023
The smallest integer that has exactly 2^n exponential semiproper divisors is A061742(n). - Bernard Schott, Feb 20 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, 1, 2]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = min(f[k,2], 2); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 11 2019

Formula

a(n) = A034444(n/A007947(n)).
Multiplicative with a(p^e) = 1 for e = 1 and 2 otherwise.
Asymptotic mean: Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 15/Pi^2 = 1.5198177546... (A082020). - Amiram Eldar, Nov 08 2020
a(n) = Sum_{d^2|n} mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
Dirichlet g.f.: zeta(s) * zeta(2*s) / zeta(4*s). - Werner Schulte, Dec 29 2022
a(n) = A034444(A000188(n)) = A034444(A008833(n)) (the number of unitary divisors of the largest square dividing n). - Amiram Eldar, Sep 03 2023
a(n) = A034444(A057521(n)) (the number of unitary divisors of the powerful part of n). - Amiram Eldar, Oct 03 2023

A323309 The sum of exponential semiproper divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 66, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and GCD(d/rad(n), n/d) = 1, were rad(n) is the largest squarefree divisor of n (A007947).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, p^e + p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (f[k,2] > 1, f[k,1] += f[k,1]^f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 10 2019

Formula

a(n) = A007947(n) * A034448(n/A007947(n)).
Multiplicative with a(p^e) = p for e = 1 and p^e + p otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.5628034365... . - Amiram Eldar, Dec 01 2022

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A349026 Exponential unitary harmonic numbers: numbers k such that the harmonic mean of the exponential unitary divisors of k is an integer.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2021

Keywords

Comments

First differs from A348964 at n = 102. a(102) = 144 is not an exponential harmonic number of type 2.
The exponential unitary divisors of n = Product p(i)^e(i) are all the numbers of the form Product p(i)^b(i) where b(i) is a unitary divisor of e(i) (see A278908).
Equivalently, numbers k such that A349025(k) | k * A278908(k).

Examples

			The squarefree numbers are trivial terms. If k is squarefree, then it has a single exponential unitary divisor, k itself, and thus the harmonic mean of its exponential unitary divisors is also k, which is an integer.
144 is a term since its exponential unitary divisors are 6, 18, 48 and 144, and their harmonic mean, 16, is an integer.
		

Crossrefs

Cf. A278908 (number of exponential unitary divisors), A322857, A322858, A323310, A349025, A349027.
Similar sequences: A001599, A006086, A063947, A286325, A319745, A348964.

Programs

  • Mathematica
    f[p_, e_] := p^e * 2^PrimeNu[e] / DivisorSum[e, p^(e - #) &, CoprimeQ[#, e/#] &]; euhQ[1] = True; euhQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], euhQ]
Showing 1-4 of 4 results.