cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323324 Coefficients T(n,k) of x^n*y^(n-k)*z^k in function A = A(x,y,z) such that A = 1 + x*B*C, B = 1 + y*C*A, and C = 1 + z*A*B, as a triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 200, 64, 1, 1, 125, 875, 875, 125, 1, 1, 216, 2835, 6272, 2835, 216, 1, 1, 343, 7546, 30870, 30870, 7546, 343, 1, 1, 512, 17472, 118272, 217800, 118272, 17472, 512, 1, 1, 729, 36450, 378378, 1146717, 1146717, 378378, 36450, 729, 1, 1, 1000, 70125, 1056000, 4879875, 8016008, 4879875, 1056000, 70125, 1000, 1, 1, 1331, 126445, 2647359, 17649060, 44088044, 44088044, 17649060, 2647359, 126445, 1331, 1, 1, 1728, 216216, 6086080, 56119635, 201636864, 306330752, 201636864, 56119635, 6086080, 216216, 1728, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 11 2019

Keywords

Comments

Row sums equal A165817(n), the number of compositions of n into 2*n parts, for n >= 0.
Central terms equal 2*A165817(n)^2, for n >= 1.

Examples

			This triangle begins:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 64, 200, 64, 1;
1, 125, 875, 875, 125, 1;
1, 216, 2835, 6272, 2835, 216, 1;
1, 343, 7546, 30870, 30870, 7546, 343, 1;
1, 512, 17472, 118272, 217800, 118272, 17472, 512, 1;
1, 729, 36450, 378378, 1146717, 1146717, 378378, 36450, 729, 1;
1, 1000, 70125, 1056000, 4879875, 8016008, 4879875, 1056000, 70125, 1000, 1;
1, 1331, 126445, 2647359, 17649060, 44088044, 44088044, 17649060, 2647359, 126445, 1331, 1;
1, 1728, 216216, 6086080, 56119635, 201636864, 306330752, 201636864, 56119635, 6086080, 216216, 1728, 1; ...
ROW SUMS are
[1, 2, 10, 56, 330, 2002, 12376, 77520, 490314, ..., binomial(3*n-1, n), ...].
CENTRAL TERMS are
[1, 8, 200, 6272, 217800, 8016008, 306330752, ..., 2*binomial(3*n-1, n)^2, ...].
		

Crossrefs

Cf. A323325, A165817 (row sums).

Programs

  • PARI
    {T(n,k) = my(A=1,B=1,C=1); for(i=0,n,
    A = 1 + x*B*C +x*O(x^n);
    B = 1 + y*A*C +y*O(y^n);
    C = 1 + z*A*B +z*O(z^n));
    polcoeff(polcoeff(polcoeff(A,n,x),n-k,y),k,z)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Sum_{k=0..n} T(n,k) = binomial(3*n-1, n) for n >= 0.
Sum_{k=0..n} k * T(n,k) = n * binomial(3*n-1, n-1), for n >= 0.
T(2*n,n) = 2 * binomial(3*n-1, n)^2 for n >= 1, with a(0) = 1.
T(n,k) = T(n,n-k) for k = 0..n, for n >= 0.
T(n,1) = n^3 for n >= 0.
T(n,2) = n^3*(n^2-1)*(2*n-3)/24 for n >= 0.