cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323326 a(n) = 2*T(n) - pi(n), where T(n) (A208251) is the number of refactorable/tau numbers (A033950) <= n and pi(n) (A000720) is the number of primes <= n.

Original entry on oeis.org

2, 3, 2, 2, 1, 1, 0, 2, 4, 4, 3, 5, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 3, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 5, 4, 4, 4, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 2, 4, 4, 4, 3, 5, 5, 5, 5, 7, 6, 6, 6, 6, 6, 6, 6, 8, 7, 7, 7, 7, 6, 6, 5, 7, 7, 7, 6, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Jud McCranie, Jan 11 2019

Keywords

Comments

Colton conjectured that T(n) >= pi(n)/2 for all n, i.e., this sequence is nonnegative. Zelinsky proved it for n > 7.42*10^13 (see the Zelinsky reference). This calculation went to 7.44*10^13, proving the conjecture.

Examples

			For n=6, pi(6)=3, T(6)=2, so a(6) = 2*2 - 3 = 1.
		

Crossrefs