cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A323329 Lesser of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1330, 2660, 3850, 5320, 6650, 7700, 10640, 11270, 13300, 14950, 15400, 18550, 19250, 21280, 22540, 26600, 29900, 30800, 33250, 37100, 38500, 42560, 45080, 53200, 59800, 61600, 66500, 73370, 74200, 74750, 77000, 78890, 85120, 90160, 92750, 96250, 106400, 119600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

t(n) = psi(n) - n is the sum of aliquot divisors of n, d, such that n/d is squarefree. Penney & Pomerance proposed a problem to show that the "pseudo-aliquot" sequence related to this function is unbounded. This sequence lists number with pseudo-aliquot sequence of cycle 2. The sequence that is analogous to perfect numbers is A033845.
The asymptotic density of the terms relative to the positive integers is zero. See Dimitrov link. - S. I. Dimitrov, Aug 06 2025

Crossrefs

Cf. A001615, A002025, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323330.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 120000}]; s

A323330 Larger of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1550, 3100, 4790, 6200, 7750, 9580, 12400, 12922, 15500, 15290, 19160, 20330, 23950, 24800, 25844, 31000, 30580, 38320, 38750, 40660, 47900, 49600, 51688, 62000, 61160, 76640, 77500, 82150, 81320, 76450, 95800, 90454, 99200, 103376, 101650, 119750, 124000, 122320
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The terms are ordered according to the order of their lesser counterparts (A323329).

Crossrefs

Cf. A001615, A002046, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323329.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m, 1, 120000}]; s

A371423 Aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) that starts with 222.

Original entry on oeis.org

222, 228, 280, 360, 585, 546, 672, 1008, 1612, 1568, 1197, 1040, 1302, 1536, 2046, 2304, 949, 518, 456, 600, 930, 1152, 1105, 756, 1120, 1512, 2400, 3906, 4992, 7140, 12096, 20320, 24192, 40800, 70308, 108416, 135660, 241920, 490560, 902208, 1235456, 1309440, 2354688
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

222 is the least number k for which the repeated iterations of the mapping k -> A371418(k) seem to generate an unbounded sequence.

Examples

			a(1) = 222 by definition.
a(2) = A371418(a(1)) = A371418(222) = 228.
a(3) = A371418(a(2)) = A371418(228) = 280.
		

Crossrefs

Similar sequences: A008892, A323328, A361421.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]]; NestList[f, 222, 60]
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m = 222); for(n = 1, nmax, print1(m, ", "); m = f(m));}

A332326 Decimal expansion of the least positive zero of the 4th Maclaurin polynomial of cos x.

Original entry on oeis.org

1, 5, 9, 2, 4, 5, 0, 4, 3, 4, 0, 3, 6, 2, 5, 1, 3, 8, 1, 6, 6, 8, 9, 9, 8, 6, 7, 0, 4, 8, 4, 0, 0, 1, 9, 6, 9, 6, 5, 9, 5, 5, 0, 5, 6, 2, 7, 0, 7, 2, 2, 1, 7, 1, 8, 2, 1, 7, 6, 8, 6, 4, 5, 5, 1, 7, 7, 5, 6, 6, 8, 0, 7, 6, 2, 1, 2, 2, 5, 3, 4, 1, 3, 2, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2020

Keywords

Comments

The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n ^(2n)/(2n)!.
Let z(n) be the least positive zero of p(2n,x). The limit of z(n) is Pi/2 = 1.570796326..., as in A019669.

Examples

			Least positive zero = 1.592450434036251381668998670484001969...
		

Crossrefs

Programs

  • Mathematica
    z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
    t = x /. NSolve[p[4, x] == 0, x, z][[3]]
    u = RealDigits[t][[1]]
    Plot[Evaluate[p[4, x]], {x, -1, 4}]

A323331 Smallest member of sociable quadruples using Dedekind psi function (A001615).

Original entry on oeis.org

11398670, 22797340, 38369450, 45594680, 56993350, 59334310, 76738900, 91189360, 113986700, 118668620, 153477800, 182378720, 209524210, 227973400, 237337240, 268586150, 284966750, 306955600, 364757440, 419048420, 455946800, 474674480, 537172300, 539867650, 569933500
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

Numbers k whose iterations of k -> A001615(k) - k are cyclic with a period of 4, and in each cyclic quadruple k is the least of the 4 members.

Examples

			11398670 is in the sequence since the iterations of k -> A001615(k) - k are cyclic with a period of 4: 11398670, 11475730, 12474350, 14093650, 11398670, ... and 11398670 is the smallest member of the quadruple.
		

Crossrefs

Programs

  • Mathematica
    t[0]=0; t[1]=0; t[n_]:=(Times@@(1+1/Transpose[FactorInteger[n]][[1]])-1)*n;
    seq[n_]:=NestList [t, n, 4][[2;; 5]] ; aQ[n_] := Module[ {s=seq[n]}, n==Min[s] && Count[s, n]==1]; s={}; Do[If[aQ[n], AppendTo[s, n]], {n, 1, 10^9}]; s
Showing 1-5 of 5 results.