A323335 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: the point with coordinates X=k and Y=n is the T(n, k)-th term of the first type of Wunderlich curve.
1, 2, 6, 3, 5, 7, 48, 4, 8, 16, 49, 47, 9, 15, 17, 54, 50, 46, 10, 14, 18, 55, 53, 51, 45, 11, 13, 19, 56, 60, 52, 44, 40, 12, 20, 24, 57, 59, 61, 43, 41, 39, 21, 23, 25, 462, 58, 62, 70, 42, 38, 30, 22, 26, 106, 463, 461, 63, 69, 71, 37, 31, 29, 27, 105, 107
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 ---+------------------------------------ 0 | 1 6---7 16--17--18--19 24--25 | | | | | | | | 1 | 2 5 8 15--14--13 20 23 26 | | | | | | | | 2 | 3---4 9--10--11--12 21--22 27 | | 3 | 48--47--46--45 40--39 30--29--28 | | | | | | 4 | 49--50--51 44 41 38 31--32--33 | | | | | | 5 | 54--53--52 43--42 37--36--35--34 | | 6 | 55 60--61 70--71--72--73 78--79 | | | | | | | | 7 | 56 59 62 69--68--67 74 77 80 | | | | | | | | 8 | 57--58 63--64--65--66 75--76 81
Links
- Robert Dickau, Wunderlich Curves
- Wolfram Demonstrations Project, Wunderlich Curves
- Index entries for sequences that are permutations of the natural numbers
Comments