cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323345 Square array read by ascending antidiagonals: T(n, k) is the number of partitions of n where parts, if sorted in ascending order, form an arithmetic progression (AP) with common difference of k; n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Luc Rousseau, Jan 11 2019

Keywords

Comments

T(n, k) is the number of positive integers in the sequence defined, for all i >= 1, by x_1 = n and x_i = (i-1)*(x_(i-1)-k)/i; or defined equivalently by x_i=n/i-(k/2)*(i-1). An x_i positive and integer characterizes the AP-partition with smallest part x_i and number of parts i.
T(n, k) is the number of i, positive integers, such that n - P(k+2,i) is both nonnegative and divisible by i, where P(r,i) denotes the i-th r-gonal number (see A057145).

Examples

			There are 4 partitions of 150 such that the parts form an arithmetic progression with common difference of 9:
150 = 150
150 = 41 + 50 + 59
150 = 24 + 33 + 42 + 51
150 = 12 + 21 + 30 + 39 + 48
Then, T(150,9) = 4.
Array begins:
     k 0 1 2 3 4 5 6 7 8 9
   n +--------------------
   1 | 1 1 1 1 1 1 1 1 1 1
   2 | 2 1 1 1 1 1 1 1 1 1
   3 | 2 2 1 1 1 1 1 1 1 1
   4 | 3 1 2 1 1 1 1 1 1 1
   5 | 2 2 1 2 1 1 1 1 1 1
   6 | 4 2 2 1 2 1 1 1 1 1
   7 | 2 2 1 2 1 2 1 1 1 1
   8 | 4 1 2 1 2 1 2 1 1 1
   9 | 3 3 2 2 1 2 1 2 1 1
  10 | 4 2 2 1 2 1 2 1 2 1
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] :=
    Module[{c = 0, i = 1, x = n},
      While[x >= 1, If[IntegerQ[x], c++]; i++; x = (i-1)*(x-k)/i]; c]
    A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
    A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
    a[n_] := T[A004736[n], A002260[n] - 1]
    Table[a[n], {n, 1, 91}]
    (* Second program: *)
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
    T[n_, k_] := col[k][[n]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)
  • PARI
    T(n,k)=c=0;i=1;x=n;while(x>=1,if(frac(x)==0,c++);i++;x=n/i-(k/2)*(i-1));c
    for(s=1,13,for(k=0,s-1,n=s-k;print1(T(n,k),", ")))

Formula

T(n, 0) = A000005(n), the number of divisors of n.
T(n, 1) = A001227(n), the number of odd divisors of n.
T(n, 2) = A038548(n), the number of divisors of n that are at most sqrt(n).
T(n, 3) = A117277(n).
The g.f. for column d is Sum_{k>=1} x^(k*(d*k-d+2)/2)/(1-x^k) [information taken from A117277]. - Joerg Arndt, May 05 2020