cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A117277 Number of partitions of n whose consecutive parts differ by 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2, 3, 4, 1, 2, 3, 3, 1, 4, 2, 2, 3, 2, 2, 4, 1, 3, 3, 2, 1, 4, 4, 2, 2, 2, 2, 5, 1, 3, 3, 2, 2, 4, 2, 2, 3, 3, 2, 4, 1, 2, 4, 3, 2, 4, 2, 3, 2, 2, 3, 4, 3, 2, 3, 2, 1, 6
Offset: 1

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly 3 times. Example: a(15)=3 because we have [3,3,2,2,2,1,1,1],[2,2,2,2,2,2,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
Row sums of A330887. - Omar E. Pol, May 07 2020
Column 3 of A323345. - Omar E. Pol, Dec 03 2020

Examples

			a(15) = 3 because we have [15], [9,6] and [8,5,2].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^((3*k^2-k)/2)/(1-x^k),k=1..10): gser:=series(g,x=0,140): seq(coeff(gser,x^n),n=1..135);
  • Mathematica
    Table[Sum[If[n > 3*k*(k-1)/2 && IntegerQ[n/k - 3*(k-1)/2], 1, 0], {k, Divisors[2*n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 23 2024 *)
  • PARI
    seq(N,d)=my(x='x+O('x^N));Vec(sum(k=1,N,x^(k*(d*k-d+2)/2)/(1-x^k)));
    seq(100,3) \\ Joerg Arndt, May 05 2020

Formula

G.f.: Sum_{k>=1} x^((3*k^2-k)/2)/(1-x^k). In general, the generating function for the number of partitions in which consecutive parts differ by d is Sum_{k>=1} x^(k*(d*k-d+2)/2)/(1-x^k). For d=0, 1 and 2 one obtains A000005, A001227 and A038548, respectively.

A334461 a(n) is the number of partitions of n into consecutive parts that differ by 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 5, 1, 3, 2, 4, 1, 4, 1, 3, 4
Offset: 1

Views

Author

Omar E. Pol, May 01 2020

Keywords

Examples

			For n = 28 there are three partitions of 28 into consecutive parts that differ by 4, including 28 as a valid partition. They are [28], [16, 12] and [13, 9, 5, 1]. So a(28) = 3.
		

Crossrefs

Row sums of A334460.
Column k=4 of A323345.
Sequences of this family whose consecutive parts differ by k are A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), this sequence (k=4), A334541 (k=5), A334948 (k=6).

Programs

  • Mathematica
    nmax = 105;
    col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
    a[n_] := col[4][[n]];
    Array[a, nmax] (* Jean-François Alcover, Nov 30 2020 *)
    Table[Sum[If[n > 2*k*(k-1), 1, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
  • PARI
    seq(N, d)=my(x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(d*k-d+2)/2)/(1-x^k)));
    seq(100, 4) \\ Joerg Arndt, May 05 2020

Formula

The g.f. for "consecutive parts that differ by d" is Sum_{k>=1} x^(k*(d*k-d+2)/2) / (1-x^k); cf. A117277. - Joerg Arndt, Nov 30 2020

A334466 Square array read by antidiagonals upwards: T(n,k) is the total number of parts in all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 3, 3, 1, 1, 1, 8, 4, 1, 1, 1, 1, 1, 15, 3, 3, 3, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 18, 6, 3, 3, 3, 1, 1, 1, 1, 1, 12, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 14, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 3, 6, 3, 3, 3, 3, 1
Offset: 1

Views

Author

Omar E. Pol, May 01 2020

Keywords

Comments

The one-part partition n = n is included in the count.
The column k is related to (k+2)-gonal numbers, assuming that 2-gonals are the nonnegative numbers, 3-gonals are the triangular numbers, 4-gonals are the squares, 5-gonals are the pentagonal numbers, and so on.
Note that the number of parts for T(n,0) = A000203(n), equaling the sum of the divisors of n.
For fixed k>0, Sum_{j=1..n} T(j,k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(k)). - Vaclav Kotesovec, Oct 23 2024

Examples

			Square array starts:
   n\k|   0  1  2  3  4  5  6  7  8  9 10 11 12
   ---+---------------------------------------------
   1  |   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   2  |   3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   3  |   4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   4  |   7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   5  |   6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   6  |  12, 4, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
   7  |   8, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, ...
   8  |  15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, ...
   9  |  13, 6, 4, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, ...
  10  |  18, 5. 3. 1. 3. 1, 3, 1, 3, 1, 1, 1, 1, ...
  11  |  12, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, ...
  12  |  28, 4, 6, 4, 3, 1, 3, 1, 3, 1, 3, 1, 1, ...
  ...
For n = 9 we have that:
For k = 0 the partitions of 9 into consecutive parts that differ by 0 (or simply: the partitions of 9 into equal parts) are [9], [3,3,3], [1,1,1,1,1,1,1,1,1]. In total there are 13 parts, so T(9,0) = 13.
For k = 1 the partitions of 9 into consecutive parts that differ by 1 (or simply: the partitions of 9 into consecutive parts) are [9], [5,4], [4,3,2]. In total there are six parts, so T(9,1) = 6.
For k = 2 the partitions of 9 into consecutive parts that differ by 2 are [9], [5, 3, 1]. In total there are four parts, so T(9,2) = 4.
		

Crossrefs

Columns k: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6), A377300 (k=7), A377301 (k=8).
Triangles whose row sums give the column k: A127093 (k=0), A285914 (k=1), A330466 (k=2) (conjectured), A330888 (k=3), A334462 (k=4), A334540 (k=5), A339947 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Tables of partitions related to column k: A010766 (k=0), A286001 (k=1), A332266 (k=2), A334945 (k=3), A334618 (k=4).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[n x^(n(k n - k + 2)/2)/(1 - x^n), {n, 1, nmax}] + O[x]^(nmax+1), x];
    T[n_, k_] := col[k][[n+1]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

The g.f. for column k is Sum_{n>=1} n*x^(n*(k*n-k+2)/2)/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)

A334541 a(n) is the number of partitions of n into consecutive parts that differ by 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 1, 3, 3, 2, 1, 3, 3, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 1, 2, 4, 2, 1, 4, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 1, 5
Offset: 1

Views

Author

Omar E. Pol, May 05 2020

Keywords

Comments

Note that all sequences of this family as A000005, A001227, A038548, A117277, A334461, etc. could be prepended with a(0) = 1 when they are interpreted as sequences of number of partitions, since A000041(0) = 1. However here a(0) is omitted in accordance with the mentioned members of the same family.
For the relation to heptagonal numbers see also A334465.

Examples

			For n = 27 there are three partitions of 27 into consecutive parts that differ by 5, including 27 as a valid partition. They are [27], [16, 11] and [14, 9, 4], so a(27) = 3.
		

Crossrefs

Row sums of A334465.
Column k=5 of A323345.
Sequences of this family whose consecutive parts differ by k are A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), this sequence (k=5).

Programs

  • Mathematica
    first[n_] := Module[{res = Array[1&, n]}, For[i = 2, True, i++, start = i + 5 Binomial[i, 2]; If[start > n, Return[res]]; For[j = start, j <= n, j += i, res[[j]]++]]];
    first[105] (* Jean-François Alcover, Nov 30 2020, after David A. Corneth *)
    Table[Sum[If[n > 5*k*(k-1)/2 && IntegerQ[n/k - 5*(k-1)/2], 1, 0], {k, Divisors[2*n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 23 2024 *)
  • PARI
    seq(N, d)=my(x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(d*k-d+2)/2)/(1-x^k)));
    seq(100, 5) \\ Joerg Arndt, May 06 2020
    
  • PARI
    first(n) = { my(res = vector(n, i, 1)); for(i = 2, oo, start = i + 5 * binomial(i, 2); if(start > n, return(res)); forstep(j = start, n, i, res[j]++ ) ); } \\ David A. Corneth, May 17 2020

Formula

The g.f. for "consecutive parts that differ by d" is Sum_{k>=1} x^(k*(d*k-d+2)/2) / (1-x^k); cf. A117277. - Joerg Arndt, Nov 30 2020

A334948 a(n) is the number of partitions of n into consecutive parts that differ by 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3
Offset: 1

Views

Author

Omar E. Pol, May 27 2020

Keywords

Comments

Note that all sequences of this family as A000005, A001227, A038548, A117277, A334461, A334541, etc. could be prepended with a(0) = 1 when they are interpreted as sequences of number of partitions, since A000041(0) = 1. However here a(0) is omitted in accordance with the mentioned members of the same family.
For the relation to octagonal numbers see also A334946.

Examples

			For n = 24 there are three partitions of 24 into consecutive parts that differ by 6, including 24 as a valid partition. They are [24], [15, 9] and [14, 8, 2], so a(24) = 3.
		

Crossrefs

Row sums of A334946.
Column k=6 of A323345.
Sequences of this family whose consecutive parts differ by k are A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), this sequence (k=6).

Programs

Formula

G.f.: Sum_{k>=1} x^(k*(3*k - 2)) / (1 - x^k). - Ilya Gutkovskiy, Nov 23 2020

A334467 Square array read by antidiagonals upwards: T(n,k) is the sum of all parts of all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 4, 1, 6, 2, 1, 12, 6, 2, 1, 10, 4, 3, 2, 1, 24, 10, 8, 3, 2, 1, 14, 12, 5, 4, 3, 2, 1, 32, 14, 12, 10, 4, 3, 2, 1, 27, 8, 7, 6, 5, 4, 3, 2, 1, 40, 27, 16, 14, 12, 5, 4, 3, 2, 1, 22, 20, 18, 8, 7, 6, 5, 4, 3, 2, 1, 72, 22, 20, 18, 16, 14, 6, 5, 4, 3, 2, 1, 26, 24, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, May 05 2020

Keywords

Examples

			Array begins:
     k  0   1   2   3   4   5   6   7   8   9  10
   n +------------------------------------------------
   1 |  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   2 |  4,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
   3 |  6,  6,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
   4 | 12,  4,  8,  4,  4,  4,  4,  4,  4,  4,  4, ...
   5 | 10, 10,  5, 10,  5,  5,  5,  5,  5,  5,  5, ...
   6 | 24, 12, 12,  6, 12,  6,  6,  6,  6,  6,  6, ...
   7 | 14, 14,  7, 14,  7, 14,  7,  7,  7,  7,  7, ...
   8 | 32,  8, 16,  8, 16,  8, 16,  8,  8,  8,  8, ...
   9 | 27, 27, 18, 18,  9, 18,  9, 18,  9,  9,  9, ...
  10 | 40, 20, 20, 10, 20, 20, 20, 10, 20, 10, 10, ...
...
		

Crossrefs

Columns k: A038040 (k=0), A245579 (k=1), A060872 (k=2), A334463 (k=3), A327262 (k=4), A334733 (k=5), A334953 (k=6).
Every diagonal starting with 1 gives A000027.
Sequences of number of parts related to column k: A000203 (k=0), A204217 (k=1), A066839 (k=2) (conjectured), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 13;
    col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
    T[n_, k_] := n col[k][[n]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

T(n,k) = n*A323345(n,k).
Showing 1-6 of 6 results.