A323346 Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = 1 (including e = 1) in Clifford algebra Cl(p,q)(R).
1, 2, 1, 3, 3, 1, 4, 6, 4, 2, 6, 10, 10, 6, 6, 12, 16, 20, 16, 12, 16, 28, 28, 36, 36, 28, 28, 36, 64, 56, 64, 72, 64, 56, 64, 72, 136, 120, 120, 136, 136, 120, 120, 136, 136, 272, 256, 240, 256, 272, 256, 240, 256, 272, 256, 528, 528, 496, 496, 528, 528, 496, 496, 528, 528, 496
Offset: 0
Examples
Table begins p\q| 0 1 2 3 4 5 ... ---+------------------------------- 0 | 1, 1, 1, 2, 6, 16, ... 1 | 2, 3, 4, 6, 12, 28, ... 2 | 3, 6, 10, 16, 28, 56, ... 3 | 4, 10, 20, 36, 64, 120, ... 4 | 6, 16, 36, 72, 136, 256, ... 5 | 12, 28, 64, 136, 272, 528, ... ... See A323100 for an example that shows T(1,3) = 6.
Links
- Jianing Song, Antidiagonals n = 0..99, flattened
- Wikipedia, Clifford algebras
Crossrefs
Programs
-
Maple
s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2, s][1 + modp(n+1, 8)]: T := proc(n, k) option remember; if n = 0 then return 2^k*(1 - 1/2) - 2^((k - 3)/2)*h(k + 2) fi; if k = 0 then return 2^n*(1 - 1/2) - 2^((n - 3)/2)*h(n) fi; T(n, k-1) + T(n-1, k) end: for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
-
Mathematica
T[n_, k_] := 2^(n + k) - Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
-
PARI
T(p,q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*!(binomial(i-j, 2)%2)))
Formula
T(p,q) = Sum_{i=0..p} Sum_{j=0..q} binomial(p, i)*binomial(q, j)*(1 - (binomial(i - j, 2) mod 2)).
T(p,q) = 2^(p+q) - A323100(p,q).
Comments