A323100 Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = -1 in Clifford algebra Cl(p,q)(R).
0, 0, 1, 1, 1, 3, 4, 2, 4, 6, 10, 6, 6, 10, 10, 20, 16, 12, 16, 20, 16, 36, 36, 28, 28, 36, 36, 28, 64, 72, 64, 56, 64, 72, 64, 56, 120, 136, 136, 120, 120, 136, 136, 120, 120, 240, 256, 272, 256, 240, 256, 272, 256, 240, 256, 496, 496, 528, 528, 496, 496, 528, 528, 496, 496, 528
Offset: 0
Examples
Table begins p\q| 0 1 2 3 4 5 ... ---+------------------------------- 0 | 0, 1, 3, 6, 10, 16, ... 1 | 0, 1, 4, 10, 20, 36, ... 2 | 1, 2, 6, 16, 36, 72, ... 3 | 4, 6, 12, 28, 64, 136, ... 4 | 10, 16, 28, 56, 120, 256, ... 5 | 20, 36, 64, 120, 240, 496, ... ... Example for T(1,3) = 10: (Start) 1^2 = 1; (e_1)^2 = 1; (e_2)^2 = -1; (e_3)^2 = -1; (e_4)^2 = -1; ((e_1)*(e_2))^2 = -(e_1)^2*(e_2)^2 = 1; ((e_1)*(e_3))^2 = -(e_1)^2*(e_3)^2 = 1; ((e_1)*(e_4))^2 = -(e_1)^2*(e_4)^2 = 1; ((e_2)*(e_3))^2 = -(e_2)^2*(e_3)^2 = -1; ((e_2)*(e_4))^2 = -(e_2)^2*(e_4)^2 = -1; ((e_3)*(e_4))^2 = -(e_3)^2*(e_4)^2 = -1; ((e_1)*(e_2)*(e_3))^2 = -(e_1)^2*(e_2)^2*(e_3)^2 = -1; ((e_1)*(e_2)*(e_4))^2 = -(e_1)^2*(e_2)^2*(e_4)^2 = -1; ((e_1)*(e_3)*(e_4))^2 = -(e_1)^2*(e_3)^2*(e_4)^2 = -1; ((e_2)*(e_3)*(e_4))^2 = -(e_2)^2*(e_3)^2*(e_4)^2 = 1; ((e_1)*(e_2)*(e_3)*(e_4))^2 = (e_1)^2*(e_2)^2*(e_3)^2*(e_4)^2 = -1. (End) From _Peter Luschny_, Jan 13 2019: (Start) The first few lines of the triangle T(i-j,j) are: [0] 0; [1] 0, 1; [2] 1, 1, 3; [3] 4, 2, 4, 6; [4] 10, 6, 6, 10, 10; [5] 20, 16, 12, 16, 20, 16; [6] 36, 36, 28, 28, 36, 36, 28; [7] 64, 72, 64, 56, 64, 72, 64, 56; [8] 120, 136, 136, 120, 120, 136, 136, 120, 120; [9] 240, 256, 272, 256, 240, 256, 272, 256, 240, 256; (End)
Links
- Jianing Song, Antidiagonals n = 0..99, flattened
- Wikipedia, Clifford algebras
Crossrefs
Programs
-
Maple
s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2, s][1 + modp(n+1, 8)]: T := proc(n, k) option remember; if n = 0 then return 2^(k - 1) + 2^((k - 3)/2)*h(k + 2) fi; if k = 0 then return 2^(n - 1) + 2^((n - 3)/2)*h(n) fi; T(n, k-1 ) + T(n-1, k) end: for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
-
Mathematica
T[n_, k_] := Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
-
PARI
T(p,q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*(binomial(i-j, 2)%2)))
Formula
T(p,q) = Sum_{i=0..p} Sum_{j=0..q} binomial(p, i)*binomial(q, j)*(binomial(i - j, 2) mod 2).
T(p,q) = 2^(p+q) - A323346(p,q).
Comments