cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321959 a(n) = [x^n] ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1)).

Original entry on oeis.org

0, 1, 5, 16, 42, 100, 228, 512, 1144, 2544, 5616, 12288, 26656, 57408, 122944, 262144, 556928, 1179392, 2490112, 5242880, 11010560, 23069696, 48235520, 100663296, 209713152, 436203520, 905965568, 1879048192, 3892322304, 8053080064, 16643014656, 34359738368
Offset: 0

Views

Author

Peter Luschny, Jan 12 2019

Keywords

Examples

			G.f. = x + 5*x^2 + 16*x^3 + 42*x^4 + 100*x^5 + 228*x^6 + ... - _Michael Somos_, Sep 30 2022
		

Crossrefs

Antidiagonal sums of A323100.

Programs

  • Maple
    ogf := ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1));
    ser := series(ogf, x, 32): seq(coeff(ser, x, n), n=0..31);
  • Mathematica
    LinearRecurrence[{6,-14,16,-8}, {0,1,5,16}, 32] (* Georg Fischer, May 08 2021 *)
  • PARI
    {a(n) = if(n<0, 0, polcoeff( x*(1 - x) / ((1 - 2*x)^2*(1 - 2*x + 2*x^2)), n))}; /* Michael Somos, Sep 30 2022 */

Formula

a(n) = Sum_{k=0..n} A323100(n - k, k).
a(n) = n! [x^n] exp(x)*(exp(x)*(2*x + 1) - sin(x) - cos(x))/2.
a(n) = 2*((2*n+2)*a(n-3) - (3*n+2)*a(n-2) + (2*n+1)*a(n-1))/n for n >= 4.
a(2^n - 1) = 2^(2^n + n - 2) if n>1. - Michael Somos, Sep 30 2022

A323346 Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = 1 (including e = 1) in Clifford algebra Cl(p,q)(R).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 2, 6, 10, 10, 6, 6, 12, 16, 20, 16, 12, 16, 28, 28, 36, 36, 28, 28, 36, 64, 56, 64, 72, 64, 56, 64, 72, 136, 120, 120, 136, 136, 120, 120, 136, 136, 272, 256, 240, 256, 272, 256, 240, 256, 272, 256, 528, 528, 496, 496, 528, 528, 496, 496, 528, 528, 496
Offset: 0

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

See A323100 for an introduction of Clifford algebras.

Examples

			Table begins
p\q|  0   1   2    3    4    5  ...
---+-------------------------------
0  |  1,  1,  1,   2,   6,  16, ...
1  |  2,  3,  4,   6,  12,  28, ...
2  |  3,  6, 10,  16,  28,  56, ...
3  |  4, 10, 20,  36,  64, 120, ...
4  |  6, 16, 36,  72, 136, 256, ...
5  | 12, 28, 64, 136, 272, 528, ...
...
See A323100 for an example that shows T(1,3) = 6.
		

Crossrefs

Cf. A038503(n+1) (first row), A038504(n+1) (first column), A007582 (main diagonal).
A323100 is the complement sequence.

Programs

  • Maple
    s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2,  s][1 + modp(n+1, 8)]:
    T := proc(n, k) option remember;
    if n = 0 then return 2^k*(1 - 1/2) - 2^((k - 3)/2)*h(k + 2) fi;
    if k = 0 then return 2^n*(1 - 1/2) - 2^((n - 3)/2)*h(n) fi;
    T(n, k-1) + T(n-1, k) end:
    for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
  • Mathematica
    T[n_, k_] := 2^(n + k) - Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}];
    Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
  • PARI
    T(p,q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*!(binomial(i-j, 2)%2)))

Formula

T(p,q) = Sum_{i=0..p} Sum_{j=0..q} binomial(p, i)*binomial(q, j)*(1 - (binomial(i - j, 2) mod 2)).
T(p,q) = 2^(p+q) - A323100(p,q).

A323225 a(n) = ((2^n*n + i*(1 - i)^n - i*(1 + i)^n))/4, where i is the imaginary unit.

Original entry on oeis.org

0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, 5648, 12288, 26592, 57280, 122816, 262144, 557184, 1179904, 2490624, 5242880, 11009536, 23067648, 48233472, 100663296, 209717248, 436211712, 905973760, 1879048192, 3892305920, 8053047296, 16642981888, 34359738368
Offset: 0

Views

Author

Peter Luschny, Mar 18 2019

Keywords

Comments

Related to Clifford algebras (see A323100 and A323346).

Crossrefs

Antidiagonal sums of A323346.

Programs

  • Maple
    a := n -> ((2^n*n + I*(1 - I)^n - I*(1 + I)^n))/4:
    seq(a(n), n=0..32);
  • Mathematica
    LinearRecurrence[{6, -14, 16, -8}, {0, 1, 3, 7}, 40] (* Jean-François Alcover, Mar 20 2019 *)
    Table[((2^n n + I (1 - I)^n - I (1 + I)^n))/4, {n, 0, 29}] (* Alonso del Arte, Mar 27 2020 *)

Formula

a(n) = Sum_{k = 0..n} A323346(n - k, k - 1).
a(n) = (A001787(n) + A009545(n))/2.
a(n) = [x^n] (x*(3*x^2 - 3*x + 1))/((2*x - 1)^2*(2*x^2 - 2*x + 1)).
a(n) = n! [x^n] (exp(2*x)*x + exp(x)*sin(x))/2.
a(n) = (4*n*a(n-3) + (2 - 6*n)*a(n-2) + (4*n - 2)*a(n-1))/(n - 1) for n >= 3.
Showing 1-3 of 3 results.