cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A323369 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A323368(n) for any other number.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 24, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 22, 3, 33, 34, 35, 36, 37, 3, 38, 36, 39, 40, 41, 3, 42, 3, 30, 43, 44, 45, 46, 3, 47, 48, 46, 3, 49, 3, 50, 51, 52, 48, 53, 3, 54, 55, 56, 3, 57, 58, 59, 60, 61, 3, 62, 63, 42, 64, 46, 60, 65, 3, 66, 67, 68, 3, 69, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

Restricted growth sequence transform of function f, where f(n) = 0 for odd primes, and for any other number, f(n) = [A000035(n), A003557(n), A048250(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A322588(i) = A322588(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323369(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A048250(n)]);
    v323369 = rgs_transform(vector(up_to, n, Aux323369(n)));
    A323369(n) = v323369[n];

A323370 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 52, 3, 58, 59, 60, 3, 61, 62, 63, 64, 65, 3, 66, 67, 68, 57, 69, 67, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = 0 when n is an odd prime, and f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers.
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323367(i) = A323367(j),
a(i) = a(j) => A323371(i) = A323371(j).

Crossrefs

Differs from A323405 for the first time at n=78, where a(78) = 52, while A323405(78) = 58.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    Aux323370(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A023900(n)]);
    v323370 = rgs_transform(vector(up_to, n, Aux323370(n)));
    A323370(n) = v323370[n];

A323366 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A173557(i) = A173557(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 25, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 39, 52, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 56, 65, 72, 73, 74, 75, 76, 49, 77, 78, 79, 80, 81, 82, 68, 83, 56, 84, 68, 85, 86, 87, 88, 89, 90, 91, 92, 93, 60
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A295887(i) = A295887(j),
a(i) = a(j) => A323237(i) = A323237(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    v323366 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A173557(n)]));
    A323366(n) = v323366[n];
Showing 1-4 of 4 results.