cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323396 Irregular array read by rows, where T(n, k) is the k-th prime that is both left-truncatable and right-truncatable in base n.

Original entry on oeis.org

2, 23, 2, 3, 11, 2, 3, 13, 17, 67, 2, 3, 5, 17, 23, 83, 191, 479, 839, 2, 3, 5, 17, 19, 23, 37, 2, 3, 5, 7, 19, 23, 29, 31, 43, 47, 59, 61, 139, 157, 239, 251, 331, 349, 379, 479, 491, 1867, 2, 3, 5, 7, 23, 29, 47, 173, 2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397
Offset: 3

Views

Author

Daniel Suteu and Felix Fröhlich, Jan 13 2019

Keywords

Comments

The n-th row contains A323390(n) terms.
The largest term in the n-th row is given by A323137(n).

Examples

			Rows for n = 3..7:
  [2, 23]
  [2,  3, 11]
  [2,  3, 13, 17, 67]
  [2,  3,  5, 17, 23, 83, 191, 479, 839]
  [2,  3,  5, 17, 19, 23,  37]
		

Crossrefs

Programs

  • PARI
    digitsToNum(d, base) = sum(k=1, #d, base^(k-1) * d[k]);
    isLeftTruncatable(d, base) = my(ok=1); for(k=1, #d, if(!isprime(digitsToNum(d[1..k], base)), ok=0; break)); ok;
    generateFromPrefix(p, base) = my(seq = [p]); for(n=1, base-1, my(t=concat(n, p)); if(isprime(digitsToNum(t, base)), seq=concat(seq, select(v -> isLeftTruncatable(v, base), generateFromPrefix(t, base))))); seq;
    bothTruncatablePrimesInBase(base) = my(t=[]); my(P=primes(primepi(base-1))); for(k=1, #P, t=concat(t, generateFromPrefix([P[k]], base))); vector(#t, k, digitsToNum(t[k], base));
    row(n) = vecsort(bothTruncatablePrimesInBase(n));
    T(n,k) = row(n)[k];