A323396 Irregular array read by rows, where T(n, k) is the k-th prime that is both left-truncatable and right-truncatable in base n.
2, 23, 2, 3, 11, 2, 3, 13, 17, 67, 2, 3, 5, 17, 23, 83, 191, 479, 839, 2, 3, 5, 17, 19, 23, 37, 2, 3, 5, 7, 19, 23, 29, 31, 43, 47, 59, 61, 139, 157, 239, 251, 331, 349, 379, 479, 491, 1867, 2, 3, 5, 7, 23, 29, 47, 173, 2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397
Offset: 3
Examples
Rows for n = 3..7: [2, 23] [2, 3, 11] [2, 3, 13, 17, 67] [2, 3, 5, 17, 23, 83, 191, 479, 839] [2, 3, 5, 17, 19, 23, 37]
Links
- Daniel Suteu, Table of n, a(n) for n = 3..6587
- Wikipedia, Truncatable prime
Programs
-
PARI
digitsToNum(d, base) = sum(k=1, #d, base^(k-1) * d[k]); isLeftTruncatable(d, base) = my(ok=1); for(k=1, #d, if(!isprime(digitsToNum(d[1..k], base)), ok=0; break)); ok; generateFromPrefix(p, base) = my(seq = [p]); for(n=1, base-1, my(t=concat(n, p)); if(isprime(digitsToNum(t, base)), seq=concat(seq, select(v -> isLeftTruncatable(v, base), generateFromPrefix(t, base))))); seq; bothTruncatablePrimesInBase(base) = my(t=[]); my(P=primes(primepi(base-1))); for(k=1, #P, t=concat(t, generateFromPrefix([P[k]], base))); vector(#t, k, digitsToNum(t[k], base)); row(n) = vecsort(bothTruncatablePrimesInBase(n)); T(n,k) = row(n)[k];
Comments