cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323406 Greatest common divisor of Product (p_i^e_i)-1 and Product (p_i^e_i)+1, when n = Product (p_i^e_i): a(n) = gcd(A047994(n), A034448(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 2, 2, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 30, 4, 2, 2, 2, 2, 6, 8, 2, 2, 2, 8, 6, 4, 2, 2, 24, 2, 6, 16, 1, 12, 4, 2, 6, 4, 24, 2, 2, 2, 6, 8, 2, 12, 24, 2, 6, 2, 2, 2, 4, 4, 6, 8, 2, 2, 4, 8, 6, 4, 2, 24, 2, 2, 6, 40, 2, 2, 8, 2, 42, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A034448(n) = { my(f=factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323406(n) = gcd(A034448(n), A047994(n));

Formula

a(n) = gcd(A034448(n), A047994(n)), where A034448 is unitary sigma, and A047994 is unitary phi.