cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A323403 Sum of sigma and its Dirichlet inverse: a(n) = A000203(n) + A046692(n).

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 15, 16, 36, 0, 20, 0, 48, 48, 31, 0, 30, 0, 30, 64, 72, 0, 60, 36, 84, 40, 40, 0, 0, 0, 63, 96, 108, 96, 97, 0, 120, 112, 90, 0, 0, 0, 60, 60, 144, 0, 124, 64, 78, 144, 70, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 80, 127, 168, 0, 0, 90, 192, 0, 0, 195, 0, 228, 104, 100, 192, 0, 0, 186, 121, 252, 0, 288, 216, 264, 240, 180, 0, 288
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v046692 = DirInverse(vector(up_to,n,sigma(n)));
    A046692(n) = v046692[n];
    A323403(n) = (sigma(n)+A046692(n));

Formula

a(n) = A000203(n) + A046692(n).

A323407 Dirichlet inverse of A047994, unitary phi.

Original entry on oeis.org

1, -1, -2, -2, -4, 2, -6, -2, -4, 4, -10, 4, -12, 6, 8, 0, -16, 4, -18, 8, 12, 10, -22, 4, -8, 12, -2, 12, -28, -8, -30, 4, 20, 16, 24, 8, -36, 18, 24, 8, -40, -12, -42, 20, 16, 22, -46, 0, -12, 8, 32, 24, -52, 2, 40, 12, 36, 28, -58, -16, -60, 30, 24, 8, 48, -20, -66, 32, 44, -24, -70, 8, -72, 36, 16, 36, 60, -24, -78, 0, 8, 40, -82, -24
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Cf. also A023900.

Programs

  • PARI
    up_to = 65537;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA047994(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
    v323407 = DirInverse(vector(up_to,n,A047994(n)));
    A323407(n) = v323407[n];
Showing 1-2 of 2 results.