cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323444 Sum of exponents in prime-power factorization of Product_{k=0..n} binomial(n,k) (A001142).

Original entry on oeis.org

0, 0, 1, 2, 6, 6, 11, 10, 23, 28, 33, 28, 45, 38, 44, 50, 86, 74, 96, 82, 106, 110, 114, 96, 147, 150, 153, 182, 211, 184, 215, 186, 281, 280, 279, 278, 347, 308, 306, 304, 380, 336, 374, 328, 368, 408, 403, 352, 489, 482, 524, 516, 559, 498, 596, 586, 686, 674
Offset: 0

Views

Author

Daniel Suteu, Jan 15 2019

Keywords

Comments

Also sum of exponents in prime-power factorization of hyperfactorial(n) / superfactorial(n).

Examples

			a(4) = 6 because C(4,0)*C(4,1)*C(4,2)*C(4,3)*C(4,4) = 2^5 * 3^1 and 5 + 1 = 6, where C(n,k) is the binomial coefficient.
		

Crossrefs

Programs

  • Mathematica
    Array[Sum[PrimeOmega@ Binomial[#, k], {k, 0, #}] &, 57] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = sum(k=0, n, bigomega(binomial(n, k)));
    
  • PARI
    a(n) = my(t=0); sum(k=1, n, my(b=bigomega(k)); t+=b; k*b-t);
    
  • PARI
    first(n) = my(res = List([0]), r=0, t=0, b=0); for(k=1, n, b=bigomega(k); t += b; r += k*b-t; listput(res, r)); res \\ adapted from Daniel Suteu \\ David A. Corneth, Jan 16 2019

Formula

a(n) = A303281(n) - A303279(n), for n > 0.
a(n) = A001222(A001142(n)).