A323451 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are strictly increasing.
1, 1, 1, 3, 3, 6, 9, 12, 19, 27, 39, 54, 79, 107, 150, 209, 282, 387, 525, 707, 949, 1272, 1688, 2244, 2968, 3902, 5125, 6712, 8752, 11383, 14780, 19109, 24671, 31768, 40791, 52280, 66860, 85296, 108621, 138054, 175085, 221676, 280161, 353414, 445098, 559661
Offset: 0
Keywords
Examples
The a(8) = 19 generalized Young tableaux: 8 1 7 2 6 3 5 1 2 5 1 3 4 . 1 2 3 1 2 1 5 1 3 1 4 2 3 1 2 1 2 3 7 6 5 5 2 4 3 3 2 3 2 . 1 1 1 2 2 3 2 5 4 3
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..50
- nLab, Young Diagram.
- The Unapologetic Mathematician weblog, Generalized Young Tableaux.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@sqfacs[n],{2}]]; Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&&And@@(UnsameQ@@@DeleteCases[Transpose[PadRight[#]],0,{2}])&]],{y,IntegerPartitions[n]}],{n,10}]
Extensions
a(21)-a(45) from Seiichi Manyama, Aug 19 2020
Comments