A323487 Number of length-n ternary words that are bi-maximally squarefree.
0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 18, 0, 24, 0, 48, 42, 18, 12, 48, 78, 36, 66, 108, 102, 240, 222, 360, 330, 696, 690, 858, 1086, 1692, 1920, 2604, 3156, 4284, 5370, 7308, 9270, 12036, 15756, 20688, 26562, 34500, 44274, 59058, 75576
Offset: 1
Keywords
Examples
For n = 7 the six possibilities are 0102010 and all renamings of the letters. For n = 15 the six possibilities are 010210120102101 and all renamings of the letters.
Crossrefs
Cf. A282212, which is the one-sided version of maximally squarefree.
Programs
-
Python
def isf(w): # incrementally squarefree (check factors ending in last letter) for l in range(1, len(w)//2 + 1): if w[-2*l:-l] == w[-l:]: return False return True def is_bmsf(w, sfsnew): # is w bi-maximally squarefree lefts, rights = [c+w for c in "123"], [w+c for c in "123"] return all(x not in sfsnew for x in lefts + rights) def aupton(nn): alst, sfs = [], set("123") for n in range(1, nn+1): sfsnew = set(w+c for w in sfs for c in "123" if isf(w+c)) an = len([w for w in sfs if is_bmsf(w, sfsnew)]) alst.append(an) sfs = sfsnew return alst print(aupton(30)) # Michael S. Branicky, Sep 01 2021
Extensions
a(31)-a(58) from Michael S. Branicky, Sep 01 2021
Comments