A323505 Mirror image of (denominators of) Bernoulli tree, A106831.
1, 2, 4, 6, 8, 12, 12, 24, 16, 24, 24, 48, 24, 36, 48, 120, 32, 48, 48, 96, 48, 72, 96, 240, 48, 72, 72, 144, 96, 144, 240, 720, 64, 96, 96, 192, 96, 144, 192, 480, 96, 144, 144, 288, 192, 288, 480, 1440, 96, 144, 144, 288, 144, 216, 288, 720, 192, 288, 288, 576, 480, 720, 1440, 5040, 128, 192, 192, 384, 192, 288, 384, 960, 192, 288, 288
Offset: 0
Examples
This sequence can be represented as a binary tree: 1 | ...................2.................... 4 6 8......../ \........12 12........./ \.......24 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 16 24 24 48 24 36 48 120 32 48 48 96 48 72 96 240 48 72 72 144 96 144 240 720 etc.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag., 70 (1997), 51-56.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A036987(n) = !bitand(n,1+n); A323505(n) = if(!n,1,if(!(n%2), 2*A323505(n/2), (A001511(n+1)+1-A036987(n))*A323505((n-1)/2)));
-
PARI
A054429(n) = if(!n,n,((3<<#binary(n\2))-n-1)); \\ From A054429 A106831r1(n) = if(!n,1,if(n%2, 2*A106831r1((n-1)/2), (1+A001511(n))*A106831r1(n/2))); \\ Recurrence for A106831, when prepended with 1, thus shifted one term right A323505(n) = A106831r1(A054429(n));
Comments