A323519 a(n) is the number of ways to fill a square matrix with the multiset of prime factors of n, if the number of prime factors (counted with multiplicity) is a perfect square, and a(n) = 0 otherwise.
1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 4, 0, 4, 0, 0, 1, 12, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 12, 0, 0
Offset: 1
Keywords
Examples
The a(60) = 12 matrices: [2 2] [2 2] [2 3] [2 3] [2 5] [2 5] [3 2] [3 2] [3 5] [5 2] [5 2] [5 3] [3 5] [5 3] [2 5] [5 2] [2 3] [3 2] [2 5] [5 2] [2 2] [2 3] [3 2] [2 2]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[IntegerQ[Sqrt[PrimeOmega[n]]],Length[Permutations[primeMS[n]]],0],{n,100}]