A103198 Number of compositions of n into a square number of parts.
1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 166, 331, 716, 1574, 3368, 6892, 13447, 25127, 45391, 80428, 142615, 259085, 491855, 982400, 2045001, 4352661, 9291361, 19609786, 40574017, 81973315, 161568281, 311062991, 586764281, 1089615033, 2005257849, 3688711427
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3329 (terms n = 1..1000 from Vaclav Kotesovec)
- Vaclav Kotesovec, a(n+1)/a(n) as a graph
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, `if`(issqr(t), 1, 0), add(b(n-j, t+1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Jan 18 2019
-
Mathematica
nmax = 40; Rest[CoefficientList[Series[-1/2 + EllipticTheta[3, 0, x/(1-x)]/2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 03 2017 *)
Formula
a(n) = Sum_{k>=0} (x/(1-x))^(k^2).
Binomial transform of the characteristic function of squares A010052, with 0th term omitted. - Carl Najafi, Sep 09 2011
a(n) = Sum_{k >= 0} binomial(n-1,k^2-1). - Gus Wiseman, Jan 17 2019
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 18 2019
Comments