cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A103198 Number of compositions of n into a square number of parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 166, 331, 716, 1574, 3368, 6892, 13447, 25127, 45391, 80428, 142615, 259085, 491855, 982400, 2045001, 4352661, 9291361, 19609786, 40574017, 81973315, 161568281, 311062991, 586764281, 1089615033, 2005257849, 3688711427
Offset: 0

Views

Author

Vladeta Jovovic, Mar 18 2005

Keywords

Comments

From Gus Wiseman, Jan 17 2019: (Start)
Also the number of ways to fill a square matrix with the parts of an integer partition of n. For example, the a(6) = 11 matrices are:
[6]
.
[1 1] [1 1] [1 3] [3 1] [1 1] [1 2] [1 2] [2 1] [2 1] [2 2]
[1 3] [3 1] [1 1] [1 1] [2 2] [1 2] [2 1] [1 2] [2 1] [1 1]
(End)

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0,
          `if`(issqr(t), 1, 0), add(b(n-j, t+1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 18 2019
  • Mathematica
    nmax = 40; Rest[CoefficientList[Series[-1/2 + EllipticTheta[3, 0, x/(1-x)]/2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 03 2017 *)

Formula

a(n) = Sum_{k>=0} (x/(1-x))^(k^2).
Binomial transform of the characteristic function of squares A010052, with 0th term omitted. - Carl Najafi, Sep 09 2011
a(n) = Sum_{k >= 0} binomial(n-1,k^2-1). - Gus Wiseman, Jan 17 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 18 2019

A323520 Numbers of the form p^(k^2) where p is prime and k >= 0.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 16, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]&&IntegerQ[Sqrt[FactorInteger[#][[1,2]]]]&]

A323525 Number of ways to arrange the parts of a multiset whose multiplicities are the prime indices of n into a square matrix.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 0, 6, 4, 0, 12, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(9) = 6 matrices:
  [1 1] [1 2] [1 2] [2 1] [2 1] [2 2]
  [2 2] [1 2] [2 1] [1 2] [2 1] [1 1]
The a(38) = 9 matrices:
  [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 2] [1 2 1] [2 1 1]
  [1 1 1] [1 1 1] [1 1 1] [1 1 2] [1 2 1] [2 1 1] [1 1 1] [1 1 1] [1 1 1]
  [1 1 2] [1 2 1] [2 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1]
		

Crossrefs

The positions of 0's are numbers whose sum of prime indices is not a perfect square (A323527).
The positions of 1's are primes indexed by squares (A323526).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,Reverse[primeMS[n]]];
    Table[If[IntegerQ[Sqrt[Total[primeMS[n]]]],Length[Permutations[nrmptn[n]]],0],{n,100}]

Formula

If A056239(n) is a perfect square, a(n) = A318762(n). Otherwise, a(n) = 0.

A323521 Numbers whose number of prime factors counted with multiplicity (A001222) is not a perfect square.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 27, 28, 30, 32, 33, 34, 35, 38, 39, 42, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 96, 98, 99, 102, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!IntegerQ[Sqrt[PrimeOmega[#]]]&]

A323522 Number of ways to fill a square matrix with the parts of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 25, 49, 73, 121, 145, 217, 265, 361, 433, 553, 649, 817, 937, 1129, 1297, 1537, 1729, 2017, 2257, 2593, 2881, 3265, 3601, 4057, 4441, 4945, 5401, 5977, 6481, 7129, 7705, 8425, 9073, 9865, 373465, 374353, 738025, 1101865, 1828513
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(10) = 25 matrices:
  [10]
.
  [4 3] [4 3] [4 2] [4 2] [4 1] [4 1] [3 4] [3 4]
  [2 1] [1 2] [3 1] [1 3] [3 2] [2 3] [2 1] [1 2]
.
  [3 2] [3 2] [3 1] [3 1] [2 4] [2 4] [2 3] [2 3]
  [4 1] [1 4] [4 2] [2 4] [3 1] [1 3] [4 1] [1 4]
.
  [2 1] [2 1] [1 4] [1 4] [1 3] [1 3] [1 2] [1 2]
  [4 3] [3 4] [3 2] [2 3] [4 2] [2 4] [4 3] [3 4]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    a:= n-> (l-> add(l[i^2+1]*(i^2)!, i=0..floor(sqrt(nops(l)-1))))(b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 17 2019
  • Mathematica
    Table[Sum[(k^2)!*Length[Select[IntegerPartitions[n,{k^2}],UnsameQ@@#&]],{k,n}],{n,20}]
    (* Second program: *)
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0,
         If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]];
    a[n_] := If[n == 0, 1, Sum[(k^2)! q[n, k^2], {k, 0, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 20 2021 *)

Formula

a(n) = Sum_{k >= 0} (k^2)! * Q(n, k^2) where Q = A008289.
Showing 1-5 of 5 results.