A384914 The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
a(16) = 2 since 4 has 2 factorizations: 2^1 * 2^1 * 2^1 * 2^1 and 2^4, with exponents 1 and 4 that are squares.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * Boole[IntegerQ[Sqrt[d]]], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*issquare(d)) * s(n-j))/n); a(n) = vecprod(apply(s, factor(n)[, 2]));
Formula
Multiplicative with a(p^e) = A001156(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.08451356983124311685..., where f(x) = (1-x) / Product_{k>=1} (1-x^(k^2)).
Comments