cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A384914 The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A203640, A295658 and A365333 at n = 64, from A043289 and A053164 at n = 81, and from A063775 at n = 512.

Examples

			a(16) = 2 since 4 has 2 factorizations: 2^1 * 2^1 * 2^1 * 2^1 and 2^4, with exponents 1 and 4 that are squares.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * Boole[IntegerQ[Sqrt[d]]], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*issquare(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001156(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.08451356983124311685..., where f(x) = (1-x) / Product_{k>=1} (1-x^(k^2)).

A323519 a(n) is the number of ways to fill a square matrix with the multiset of prime factors of n, if the number of prime factors (counted with multiplicity) is a perfect square, and a(n) = 0 otherwise.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 4, 0, 4, 0, 0, 1, 12, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 12, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(60) = 12 matrices:
  [2 2] [2 2] [2 3] [2 3] [2 5] [2 5] [3 2] [3 2] [3 5] [5 2] [5 2] [5 3]
  [3 5] [5 3] [2 5] [5 2] [2 3] [3 2] [2 5] [5 2] [2 2] [2 3] [3 2] [2 2]
		

Crossrefs

Positions of 0's are A323521.
Positions of 1's are A323520.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[IntegerQ[Sqrt[PrimeOmega[n]]],Length[Permutations[primeMS[n]]],0],{n,100}]

Formula

If A001222(n) is a perfect square, then a(n) = A008480(n). Otherwise, a(n) = 0.

A323528 Numbers whose sum of prime indices is a perfect square.

Original entry on oeis.org

1, 2, 7, 9, 10, 12, 16, 23, 38, 51, 53, 65, 68, 77, 78, 94, 97, 98, 99, 104, 105, 110, 125, 126, 129, 132, 135, 140, 150, 151, 162, 168, 172, 176, 178, 180, 200, 205, 216, 224, 227, 240, 246, 249, 259, 288, 298, 311, 320, 328, 332, 333, 341, 361, 370, 377, 384
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).
Also Heinz numbers of integer partitions of perfect squares, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			10 is in the sequence because 10 = 2*5 = prime(1)*prime(3) and 1 + 3 = 4 is a square.
		

Crossrefs

Programs

  • Maple
    select(k-> issqr(add(numtheory[pi](i[1])*i[2], i=ifactors(k)[2])), [$1..400])[]; # Alois P. Heinz, Jan 22 2019
  • Mathematica
    Select[Range[100],IntegerQ[Sqrt[Sum[PrimePi[f[[1]]]*f[[2]],{f,FactorInteger[#]}]]]&]
  • PARI
    isok(n) = {my(f=factor(n)); issquare(sum(k=1, #f~, primepi(f[k, 1])*f[k,2]));} \\ Michel Marcus, Jan 18 2019

A323521 Numbers whose number of prime factors counted with multiplicity (A001222) is not a perfect square.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 27, 28, 30, 32, 33, 34, 35, 38, 39, 42, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 96, 98, 99, 102, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!IntegerQ[Sqrt[PrimeOmega[#]]]&]

A323526 One and prime numbers whose prime index is a perfect square.

Original entry on oeis.org

1, 2, 7, 23, 53, 97, 151, 227, 311, 419, 541, 661, 827, 1009, 1193, 1427, 1619, 1879, 2143, 2437, 2741, 3083, 3461, 3803, 4211, 4637, 5051, 5519, 6007, 6481, 6997, 7573, 8161, 8737, 9341, 9931, 10627, 11321, 12049, 12743, 13499, 14327, 15101, 15877, 16747, 17609
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Prime[#^2]&,20]
  • PARI
    vector(50, n, if (n==1, 1, prime((n-1)^2))) \\ Michel Marcus, Feb 15 2019

Formula

a(n) = A011757(n-1) for n > 1. - Alois P. Heinz, Jan 17 2019

A323527 Numbers whose sum of prime indices is not a perfect square.

Original entry on oeis.org

3, 4, 5, 6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Crossrefs

Complement of A323528.
Cf. A000037, A000720, A001248, A026478 (Omega is square), A056239, A112798, A323520, A323521 (Omega is not square), A323525, A323526.

Programs

  • Maple
    remove(k-> issqr(add(numtheory[pi](i[1])*i[2], i=ifactors(k)[2])), [$1..99])[];  # Alois P. Heinz, Jan 22 2019
  • Mathematica
    Select[Range[100],!IntegerQ[Sqrt[Sum[PrimePi[f[[1]]]*f[[2]],{f,FactorInteger[#]}]]]&]
  • PARI
    isok(n) = {my(f=factor(n)); !issquare(sum(k=1, #f~, primepi(f[k, 1])*f[k,2]));} \\ Michel Marcus, Jan 18 2019
Showing 1-6 of 6 results.