A323523 Number of positive integer square matrices with entries summing to n and equal row and column sums.
1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 12, 1, 7, 22, 9, 1, 64, 1, 34, 121, 11, 1, 525, 2, 13, 407, 2022, 1, 801, 1, 10163, 1036, 17, 6211, 41735, 1, 19, 2212, 285784, 1, 3822, 1, 381446, 2229142, 23, 1, 1189540, 2, 22069276, 7261, 2309410, 1, 20943183, 164176641
Offset: 0
Keywords
Examples
The a(12) = 12 matrices: [12] . [1 5] [5 1] [2 4] [4 2] [3 3] [5 1] [1 5] [4 2] [2 4] [3 3] . [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1] [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1] [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200 (terms 0..59 from Chai Wah Wu)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnsqrs[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),And[SameQ@@Length/@#,Length[#]==0||Length[#]==Length[First[#]]]&]; Table[Sum[Length[Select[ptnsqrs[Times@@Prime/@y],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{y,IntegerPartitions[n]}],{n,10}]
Formula
a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019
a(n) = Sum_{d|n, d<=n/d} A257493(d, n/d-d) for n > 0. - Andrew Howroyd, Apr 10 2020
Extensions
a(16)-a(55) from Chai Wah Wu, Jan 20 2019
Comments