A323548 Amicable numbers under the calculation of the determinant of the circulant matrix formed by their decimal digits.
108, 182, 473, 513, 1139005, 3798233, 142250866, 186519853, 245578912, 387304234, 12410397495, 15303786345, 28309184956, 28670744905
Offset: 1
Examples
| 1 0 8 | | 5 1 3 | det | 8 1 0 | = 513 and det | 3 5 1 | = 108. | 0 8 1 | | 1 3 5 | . | 1 8 2 | | 4 7 3 | det | 2 1 8 | = 473 and det | 3 4 7 | = 182. | 8 2 1 | | 7 3 4 |
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
- Wikipedia, Circulant matrix.
Programs
-
Maple
with(linalg): P:=proc(q) local a,b,c,d,j,k,n,p,t,x,y: for n from 1 to q do x:=n: for p from 1 to 2 do d:=ilog10(x)+1: a:=convert(x,base,10): c:=[]: for k from 1 to nops(a) do c:=[op(c),a[-k]]: od: t:=[op([]),c]: for k from 2 to d do b:=[op([]),c[nops(c)]]: for j from 1 to nops(c)-1 do b:=[op(b),c[j]]: od: c:=b: t:=[op(t),c]: od; x:=det(t): if x=0 then break: else if p=1 then y:=x: fi: fi: od: if n=x and y<>x then print(n); fi: od: end: P(10^8):
-
PARI
is(n) = my(c = amidet(n)); if(c == n, return(0)); amidet(c) == n amidet(n) = my(d = digits(n), qd = #d, m = matrix(qd, qd)); for(i = 1, qd, for(j = 1, qd, m[i, j] = d[1 + (j - i)%qd])); ami = matdet(m); ami \\ David A. Corneth, Jan 21 2019
Extensions
a(7)-a(14) from Giovanni Resta, Jan 21 2019
Comments