A323550 Numbers that can be expressed as (p - 1)*(q - 1) + 1, where p < q are primes.
3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 41, 43, 45, 47, 49, 53, 57, 59, 61, 65, 67, 71, 73, 79, 81, 83, 85, 89, 93, 97, 101, 103, 105, 107, 109, 113, 117, 121, 127, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 165, 167, 169, 173, 177, 179, 181, 185, 191, 193, 197, 199, 201, 205, 209
Offset: 1
Keywords
Examples
181 is a term because 181 = (11 - 1)*(19 - 1) + 1. - _Bernard Schott_, Jan 19 2019
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- A. Bogomolny, Euler Function and Theorem
Crossrefs
Cf. A065091.
Programs
-
Maple
N:= 1000: # for terms <= N S:= {}: P:= select(isprime,[2,seq(i,i=3..N,2)]): nP:= nops(P): for i from 1 to nP do for j from i+1 to nP do v:= (P[i]-1)*(P[j]-1)+1; if v > N then break fi; S:= S union {v} od od: sort(convert(S,list)); # Robert Israel, May 22 2025
-
Mathematica
nmax = 100; pairs = Table[Table[(Prime[i] - 1)*(Prime[j] - 1) + 1, {i, 1, j - 1}], {j, 2,Prime[nmax]}]; (DeleteDuplicates@Sort@Flatten@pairs)[[1 ;; nmax]]
-
PARI
isok(n) = {if (n % 2, forprime(p = 2, n, forprime(q = p+1, n, if (n == (p - 1)*(q - 1) + 1, return (1)););););} \\ Michel Marcus, Feb 25 2019
Comments