A323562 Number of rooted self-avoiding king's walks on an infinite chessboard trapped after n moves.
8, 200, 2446, 21946, 169782, 1205428, 8119338, 52862872, 336465352, 2108185746
Offset: 8
Examples
a(8) = 8, because the following 8 walks of 8 moves of a king starting at S with a first move (0,0)->(1,0) visit all neighbors of the trapping location T. The starting point itself is also blocked. There are no such shortest walks with first move (0,0)->(1,1). . o <-- o <-- o o o <-- o o --> o --> o o <-- o <-- o | ^ ^ \ / ^ ^ | | ^ v | | / \ | | v v | o --> T o o T o o T o o T o ^ ^ \ \ | | / ^ | | \ \ v v / | S --> o --> o S --> o --> o S --> o o o S --> o . S --> o --> o S --> o --> o S --> o o o S --> o | | / / ^ ^ \ | v v / / | | \ v o --> T o o T o o T o o T o ^ | | \ / | | ^ ^ | | v v / \ v v | | v o <-- o <-- o o o <-- o o --> o --> o o <-- o <-- o - _Hugo Pfoertner_, Jul 23 2020
Links
- Hugo Pfoertner, Probability density for the number of moves to self-trapping, (2019).
Comments