A323577 Primes p such that 2 is a primitive root modulo p while 2048 is not.
67, 419, 661, 859, 947, 1123, 1277, 1453, 2069, 2267, 2333, 2531, 2707, 2861, 3037, 3323, 3499, 3851, 3917, 4093, 4357, 4621, 4973, 5171, 5501, 6029, 6469, 6491, 6733, 7019, 7283, 7349, 7459, 7547, 7789, 7877, 8053, 8669, 8867, 8933, 9901, 9923, 10099, 10253, 10891, 10979
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant.
- Wikipedia, Artin's conjecture on primitive roots.
Crossrefs
Programs
-
PARI
forprime(p=3, 12000, if(znorder(Mod(2, p))==(p-1) && p%11==1, print1(p, ", ")))
Comments