cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323531 Number of square multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 9, 12, 18, 24, 36, 48, 69, 97, 139, 196, 283, 402, 576, 819, 1161, 1635, 2301, 3209, 4469, 6193, 8571, 11812, 16291, 22404, 30850, 42414, 58393, 80305, 110578, 152091, 209308, 287686, 395352, 542413, 743603, 1017489, 1390510, 1896482
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2019

Keywords

Comments

A multiset partition is square if the number of parts is equal to the number of parts in each part.

Examples

			The a(3) = 1 through a(9) = 12 square multiset partitions:
  (3)  (4)       (5)       (6)       (7)       (8)       (9)
       (11)(11)  (21)(11)  (21)(21)  (22)(21)  (22)(22)  (32)(22)
                           (22)(11)  (31)(21)  (31)(22)  (32)(31)
                           (31)(11)  (32)(11)  (31)(31)  (33)(21)
                                     (41)(11)  (32)(21)  (41)(22)
                                               (33)(11)  (41)(31)
                                               (41)(21)  (42)(21)
                                               (42)(11)  (43)(11)
                                               (51)(11)  (51)(21)
                                                         (52)(11)
                                                         (61)(11)
                                                         (111)(111)(111)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Union@@(Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@#]]&/@IntegerPartitions[n,{k}])],{k,Sqrt[n]}],{n,30}]

A323581 Number of ways to fill a Young diagram with positive integers summing to n such that the rows are strictly increasing and the columns are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 14, 19, 28, 34, 48, 60, 80, 106, 134, 171, 222, 279, 354, 452, 562, 706, 884, 1100
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2019

Keywords

Examples

			The a(8) = 14 tableaux:
  8   1 7   2 6   3 5   1 2 5   1 3 4
.
  7   6   5   2 5   3 4   2 3
  1   2   3   1     1     1 2
.
  5   4
  2   3
  1   1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Sum[Length[Select[Reverse/@Sort/@Map[primeMS,sqfacs[y],{2}],And@@Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}]&]],{y,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]

A323586 Number of plane partitions of n with no repeated rows (or, equivalently, no repeated columns).

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 30, 53, 89, 158, 265, 443, 735, 1197
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2019

Keywords

Examples

			The a(4) = 8 plane partitions with no repeated rows:
  4   31   22   211   1111
.
  3   21   111
  1   1    1
The a(6) = 30 plane partitions with no repeated columns:
  6   51   42   321
.
  5   4   41   3   31   32   31   22   21   221   211
  1   2   1    3   2    1    11   2    21   1     11
.
  4   3   31   2   21   22   21   111
  1   2   1    2   2    1    11   11
  1   1   1    2   1    1    1    1
.
  3   2   21   11
  1   2   1    11
  1   1   1    1
  1   1   1    1
.
  2   11
  1   1
  1   1
  1   1
  1   1
.
  1
  1
  1
  1
  1
  1
		

Crossrefs

Cf. A000219, A003293 (strict rows), A114736 (strict rows and columns), A117433 (distinct entries), A299968, A319646 (no repeated rows or columns), A323429, A323436 (plane partitions of type), A323580, A323587.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}]
Showing 1-3 of 3 results.