cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323587 Number of strict (distinct parts) plane partitions of n with relatively prime parts.

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 6, 10, 12, 18, 30, 40, 48, 74, 92, 142, 172, 242, 294, 412, 490, 722, 854, 1164, 1396, 1880, 2260, 2976, 3748, 4764, 5792, 7472, 9082, 11488, 14012, 17522, 21830, 26896, 32820, 40536, 49488, 60636, 73626, 89962, 108854, 134240, 160952, 195858
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2019

Keywords

Examples

			The a(9) = 18 plane partitions:
  81   72   621   54   531   432
.
  8   7   61   62   5   51   53   42   43
  1   2   2    1    4   3    1    3    2
.
  6   5   4
  2   3   3
  1   1   2
		

Crossrefs

Cf. A000219, A000837, A003293, A006951, A026007, A100883, A117433 (strict plane partitions), A300275 (plane partitions with relatively prime parts), A303546, A320802, A323584, A323585.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]}],{n,30}]

Formula

Moebius transform of A117433.