A300275
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - x^n)^n.
Original entry on oeis.org
1, 2, 5, 10, 23, 40, 85, 147, 276, 474, 858, 1421, 2484, 4079, 6850, 11137, 18333, 29277, 47329, 74768, 118703, 185614, 290782, 449568, 696009, 1066258, 1632376, 2479057, 3759611, 5661568, 8512308, 12722132, 18974109, 28157619, 41690937, 61453929, 90379783
Offset: 1
-
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*sigma[2](j), j=1..n)/n)
end:
a:= n-> add(b(d)*mobius(n/d), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Jun 21 2018
-
nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^n)^n, {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
s[n_] := SeriesCoefficient[Product[1/(1 - x^k)^k, {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]
A323584
Second Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic.
Original entry on oeis.org
1, 1, 1, 4, 8, 22, 34, 84, 137, 271, 450, 857, 1373, 2483, 3993, 6823, 10990, 18332, 28966, 47328, 74286, 118614, 184755, 290781, 448010, 695986, 1063773, 1632100, 2474970, 3759610, 5654233, 8512307, 12710995, 18973247, 28139285, 41690830, 61423271, 90379782
Offset: 0
The a(4) = 8 plane partitions with aperiodic multisets of rows and columns:
4 31 211
.
3 21 111
1 1 1
.
2 11
1 1
1 1
The a(4) = 8 plane partitions with aperiodic multiset of rows and relatively prime parts:
31 211 1111
.
3 21 111
1 1 1
.
2 11
1 1
1 1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[GCD@@Length/@Split[#]==1,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],GCD@@#==1&]}],{n,10}]
A323585
Third Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic and whose parts are relatively prime.
Original entry on oeis.org
1, 1, 0, 3, 7, 21, 30, 83, 129, 267, 428, 856, 1332, 2482, 3909, 6798, 10853, 18331, 28665, 47327, 73829, 118527, 183898, 290780, 446508, 695964, 1061290, 1631829, 2470970, 3759609, 5646952, 8512306, 12700005, 18972387, 28120953, 41690725, 61392966, 90379781
Offset: 0
The a(4) = 7 plane partitions with aperiodic multisets of rows and columns and relatively prime parts:
31 211
.
3 21 111
1 1 1
.
2 11
1 1
1 1
The same for a(5) = 21:
41 32 311 221 2111
.
4 3 31 21 22 21 211 111 1111
1 2 1 2 1 11 1 11 1
.
3 2 21 11 111
1 2 1 11 1
1 1 1 1 1
.
2 11
1 1
1 1
1 1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[GCD@@Length/@Split[#]==1,GCD@@Length/@Split[Transpose[PadRight[#]]]==1,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],GCD@@#==1&]}],{n,10}]
A323586
Number of plane partitions of n with no repeated rows (or, equivalently, no repeated columns).
Original entry on oeis.org
1, 1, 2, 5, 8, 16, 30, 53, 89, 158, 265, 443, 735, 1197
Offset: 0
The a(4) = 8 plane partitions with no repeated rows:
4 31 22 211 1111
.
3 21 111
1 1 1
The a(6) = 30 plane partitions with no repeated columns:
6 51 42 321
.
5 4 41 3 31 32 31 22 21 221 211
1 2 1 3 2 1 11 2 21 1 11
.
4 3 31 2 21 22 21 111
1 2 1 2 2 1 11 11
1 1 1 2 1 1 1 1
.
3 2 21 11
1 2 1 11
1 1 1 1
1 1 1 1
.
2 11
1 1
1 1
1 1
1 1
.
1
1
1
1
1
1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}]
Showing 1-4 of 4 results.
Comments