A323590 Primes p such that 2 is a primitive root modulo p while 8192 is not.
53, 131, 443, 547, 677, 859, 1171, 1301, 1483, 2029, 2237, 2549, 2861, 2939, 3797, 4603, 5227, 5851, 6397, 6709, 6917, 7229, 7307, 7411, 7541, 7853, 8243, 8269, 8867, 8971, 9283, 9491, 9803, 9907, 10037, 10141, 10427, 10973, 11779, 11909, 11987, 12611, 12637, 12923
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant
- Wikipedia, Artin's conjecture on primitive roots
Crossrefs
Programs
-
Maple
filter:= proc(p) isprime(p) and numtheory:-order(2,p) = p-1 end proc: select(filter, [seq(i, i = 1 .. 13000, 26)]); # Robert Israel, Dec 20 2023
-
PARI
forprime(p=3, 13000, if(znorder(Mod(2, p))==(p-1) && p%13==1, print1(p, ", ")))
Comments