A323576 Primes p such that 2 is a primitive root modulo p while 128 is not.
29, 197, 211, 379, 421, 491, 547, 659, 701, 757, 827, 883, 1373, 1499, 1667, 1877, 2213, 2269, 2339, 2437, 2549, 2843, 3011, 3067, 3347, 3557, 3571, 3613, 3851, 3907, 4019, 4229, 4243, 4397, 4621, 4691, 4789, 4957, 5573, 5741, 5923, 6203, 6469, 6637, 6763, 6917
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant.
- Wikipedia, Artin's conjecture on primitive roots.
Crossrefs
Programs
-
PARI
forprime(p=3, 7000, if(znorder(Mod(2, p))==(p-1) && p%7==1, print1(p, ", ")))
Comments