A323640
Numbers m having at least one pair (x,y) of divisors with x
6, 20, 56, 70, 110, 182, 272, 286, 308, 506, 646, 650, 812, 884, 992, 1150, 1406, 1672, 1748, 1798, 1892, 2162, 2756, 2990, 3422, 3526, 3782, 4030, 4466, 4556, 4606, 4930, 5402, 5510, 5704, 6032, 6068, 6806, 7198, 7310, 7378, 7832, 7904, 8084, 8170, 8246, 8584, 8710
Offset: 1
Keywords
Examples
56 is in the sequence as 1, 7 and 1 + 7 = 8 are divisors of 56 and no divisor of 56 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..11106 (terms <= 5*10^7)
Crossrefs
Cf. A094519.
Programs
-
Maple
filter:= proc(n) local D,i,j,nD; D:= numtheory:-divisors(n); nD:= nops(D); for i from 1 to nD-1 do for j from i+1 to nD do if (n/(D[i]+D[j]))::integer then return true fi od od; false end proc: N:= 10000: # for terms <= N C:= Vector(N): R:= NULL: for i from 1 to N do if C[i]=0 and filter(i) then R:= R, i; C[[seq(i*j,j=2..N/i)]]:= 1 fi od: R; # Robert Israel, Sep 02 2019
-
PARI
upto(n) = {my(charprim = vector(n, i, 1), res = List()); for(i = 1, n, if(charprim[i] == 1, if(isA094519(i), listput(res, i); for(k = 2, n \ i, charprim[i*k] = 0 ) , charprim[i] = 0; ) ) ); res } isA094519(n) = {my(d = divisors(n)); for(i = 1, #d - 2, for(j = i + 1, #d - 1, if(n % (d[i] + d[j]) == 0, return(1) ) ) ); 0 }
Comments