A323655 Number of non-isomorphic multiset partitions of weight n with at most 2 distinct vertices, or with at most 2 (not necessarily distinct) edges.
1, 1, 4, 7, 19, 35, 80, 149, 307, 566, 1092, 1974, 3643, 6447, 11498, 19947, 34636, 58974, 100182, 167713, 279659, 461056, 756562, 1230104, 1990255, 3195471, 5105540, 8103722, 12801925, 20107448, 31439978, 48907179, 75755094, 116797754, 179354540, 274253042
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 distinct vertices: {{1}} {{11}} {{111}} {{1111}} {{12}} {{122}} {{1122}} {{1}{1}} {{1}{11}} {{1222}} {{1}{2}} {{1}{22}} {{1}{111}} {{2}{12}} {{11}{11}} {{1}{1}{1}} {{1}{122}} {{1}{2}{2}} {{11}{22}} {{12}{12}} {{1}{222}} {{12}{22}} {{2}{122}} {{1}{1}{11}} {{1}{1}{22}} {{1}{2}{12}} {{1}{2}{22}} {{2}{2}{12}} {{1}{1}{1}{1}} {{1}{1}{2}{2}} {{1}{2}{2}{2}} Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 edges: {{1}} {{11}} {{111}} {{1111}} {{12}} {{122}} {{1122}} {{1}{1}} {{123}} {{1222}} {{1}{2}} {{1}{11}} {{1233}} {{1}{22}} {{1234}} {{1}{23}} {{1}{111}} {{2}{12}} {{11}{11}} {{1}{122}} {{11}{22}} {{12}{12}} {{1}{222}} {{12}{22}} {{1}{233}} {{12}{33}} {{1}{234}} {{12}{34}} {{13}{23}} {{2}{122}} {{3}{123}} Inequivalent representatives of the a(4) = 19 matrices: [4] [2 2] [1 3] . [1] [1 0] [1 0] [0 1] [2] [2 0] [1 1] [1 1] [3] [1 2] [0 3] [1 2] [2] [0 2] [1 1] [0 2] . [1] [1 0] [1 0] [1 0] [0 1] [1] [1 0] [0 1] [0 1] [0 1] [2] [0 2] [1 1] [0 2] [1 1] . [1] [1 0] [1 0] [1] [1 0] [0 1] [1] [0 1] [0 1] [1] [0 1] [0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={concat(1, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019
Comments