cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323657 Number of strict solid partitions of n.

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.

Examples

			The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))       ((5))       ((6))
                ((21))      ((31))      ((32))      ((42))
                ((2)(1))    ((3)(1))    ((41))      ((51))
                ((2))((1))  ((3))((1))  ((3)(2))    ((321))
                                        ((4)(1))    ((4)(2))
                                        ((3))((2))  ((5)(1))
                                        ((4))((1))  ((31)(2))
                                                    ((32)(1))
                                                    ((4))((2))
                                                    ((5))((1))
                                                    ((31))((2))
                                                    ((3)(2)(1))
                                                    ((32))((1))
                                                    ((3)(1))((2))
                                                    ((3)(2))((1))
                                                    ((3))((2))((1))
		

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A008289, A114736, A117433 (strict plane partitions), A207542, A321662, A323657.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]
    Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]

Formula

a(n) = Sum_{k=1..n} A008289(n,k)*A207542(k) for n > 0. - John Tyler Rascoe, Dec 19 2024

Extensions

a(21) onwards from John Tyler Rascoe, Dec 19 2024