A323657 Number of strict solid partitions of n.
1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions: ((1)) ((2)) ((3)) ((4)) ((5)) ((6)) ((21)) ((31)) ((32)) ((42)) ((2)(1)) ((3)(1)) ((41)) ((51)) ((2))((1)) ((3))((1)) ((3)(2)) ((321)) ((4)(1)) ((4)(2)) ((3))((2)) ((5)(1)) ((4))((1)) ((31)(2)) ((32)(1)) ((4))((2)) ((5))((1)) ((31))((2)) ((3)(2)(1)) ((32))((1)) ((3)(1))((2)) ((3)(2))((1)) ((3))((2))((1))
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..740 (first 401 terms from John Tyler Rascoe)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}] Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]
Formula
Extensions
a(21) onwards from John Tyler Rascoe, Dec 19 2024
Comments