cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323694 a(n) = [x^n] G(x)^(n+1) / (n+1)^2 for n >= 0, where G(x) is the g.f. of A323693.

Original entry on oeis.org

1, 1, 6, 80, 1780, 58212, 2609824, 153429696, 11457990000, 1060569950000, 119272908950624, 16028231512305792, 2537651853233579264, 467637448273232473600, 99254069921234336025600, 24041252393859722676492288, 6592065384977916153080977152, 2031547109837445197745286936320, 699189635655553248110260224524800
Offset: 0

Views

Author

Paul D. Hanna, Feb 20 2019

Keywords

Comments

The g.f. of A323693, G(x), satisfies: [x^n] G(x)^(n+1) = (n+1)^2 * [x^(n-1)] G(x)^(n+1) for n >= 1.

Examples

			The g.f. of A323693 begins
G(x) = 1 + 2*x + 14*x^2 + 228*x^3 + 6332*x^4 + 255800*x^5 + 13862744*x^6 + 962576816*x^7 + 83146713104*x^8 + 8746885895136*x^9 + ...
The table of coefficients of x^k in G(x)^n starts as
n=1: [1, 2, 14, 228, 6332, 255800, 13862744, ...];
n=2: [1, 4, 32, 512, 13772, 543312, 28977968, ...];
n=3: [1, 6, 54, 860, 22488, 866448, 45462704, ...];
n=4: [1, 8, 80, 1280, 32664, 1229568, 63445984, ...];
n=5: [1, 10, 110, 1780, 44500, 1637512, 83069960, ...];
n=6: [1, 12, 144, 2368, 58212, 2095632, 104491088, ...];
n=7: [1, 14, 182, 3052, 74032, 2609824, 127881376, ...]; ...
RELATED SEQUENCES.
In the above table, the main diagonal begins
[1, 4, 54, 1280, 44500, 2095632, 127881376, 9819500544, ...]
which, when divided by n^2, yields this sequence:
[1, 1, 6, 80, 1780, 58212, 2609824, 153429696, 11457990000, ...]
and also yields the secondary diagonal in the above table.
		

Crossrefs

Cf. A323693.

Programs

  • PARI
    {a(n) = my(A=[1], V); for(m=2, n+1, A=concat(A, 0); V=Vec(Ser(A)^m); A[#A] = V[#A-1]*m - V[#A]/m ); polcoeff( Ser(A)^(n+1),n)/(n+1)^2}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = [x^(n-1)] G(x)^(n+1) for n >= 1, where G(x) is the g.f. of A323693.
Showing 1-1 of 1 results.