A323713 a(n) = beginning of a run of at least n primes when x -> 3*x - 2 is iterated.
2, 3, 3, 5, 61, 1171241, 1197631, 25451791, 25451791, 9560914721, 9560914721, 860964705721, 185133795875771
Offset: 1
Examples
a(4) = 5 because 5 is the beginning of 4 primes in succession: 5, 3*5 - 2 = 13 is prime, 3*13 - 2 = 37 is prime, 3*37 - 2 = 109 is prime.
Crossrefs
Cf. A083388.
Programs
-
Mathematica
c[p_] := Block[{k=1, q = 3 p - 2}, While[PrimeQ[q], q = 3 q - 2; k++]; k]; a[n_] := Block[{p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7]
-
PARI
a(n)={x=1;k=1;while(k==1,m=0;y=x;while(isprime(y),m++;if(m==n,k=x);y=3*y-2);x++);k;}
Extensions
a(8)-a(11) from Daniel Suteu, Jan 27 2019
a(12)-a(13) from Giovanni Resta, Feb 04 2019
Comments