A323730 Table read by rows: row n lists every number j whose n-th power has exactly j divisors.
1, 1, 2, 1, 3, 1, 28, 40, 1, 5, 9, 45, 1, 1, 7, 1, 225, 1, 153, 1, 640, 1, 11, 441, 2541, 4851, 1, 6348, 1, 13, 25, 325, 1, 19474560, 1, 1, 976, 1, 17, 1089, 9537, 18513, 1, 1225, 1, 19, 1, 1521, 70840000, 107747640000, 1, 81, 1, 1, 23, 1, 343000, 3763008, 245790720
Offset: 0
Examples
Row n=3 includes 28 as a term because tau(28^3) = tau((2^2 * 7)^3) = tau(2^6 * 7^3) = (6+1)*(3+1) = 7*4 = 28. Row n=3 includes 40 as a term because tau(40^3) = tau((2^3 * 5)^3) = tau(2^9 * 5^3) = (9+1)*(3+1) = 10*4 = 40. Row n=5 includes no terms other than 1 because there exists no number j > 1 such that tau(j^5) = j. Row n=23 includes 245790720 as a term because tau(245790720^23) = tau((2^11 * 3^3 * 5 * 7 * 127)^23) = tau(2^253 * 3^69 * 5^23 * 7^23 * 127^23) = (253+1)*(69+1)(23+1)*(23+1)*(23+1) = 254*70*24^3 = 245790720. Table begins as follows: n | row n ---+--------------------------------- 0 | 1; 1 | 1, 2; 2 | 1, 3; 3 | 1, 28, 40; 4 | 1, 5, 9, 45; 5 | 1; 6 | 1, 7; 7 | 1, 225; 8 | 1, 153; 9 | 1, 640; 10 | 1, 11, 441, 2541, 4851; 11 | 1, 6348; 12 | 1, 13, 25, 325; 13 | 1, 19474560; 14 | 1; 15 | 1, 976; 16 | 1, 17, 1089, 9537, 18513; 17 | 1, 1225; 18 | 1, 19; 19 | 1, 1521, 70840000, 107747640000; 20 | 1, 81; 21 | 1; 22 | 1, 23; 23 | 1, 343000, 3763008, 245790720;
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 0..282 (all terms of rows 0..100)
- Jon E. Schoenfield, Rows 0..100 of the table
- Jon E. Schoenfield, Magma program for computing rows 0..23 of the table
Crossrefs
Formula
A073049(n) = T(n,2) if row n contains more than 1 term, 0 otherwise.
A323731(n) is the number of terms in row n.
A323732 lists the numbers n such that row n contains only the single term 1.
Comments