cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323764 Dirichlet self-convolution of the integer partition numbers A000041.

Original entry on oeis.org

1, 1, 4, 6, 14, 14, 34, 30, 64, 69, 112, 112, 228, 202, 330, 394, 575, 594, 956, 980, 1492, 1674, 2228, 2510, 3700, 3965, 5276, 6200, 8126, 9130, 12318, 13684, 17842, 20622, 25808, 29976, 38377, 43274, 53990, 62976, 77912, 89166, 110656, 126522, 154918, 179744
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(4) = 14 multiset partitions of constant multiset partitions:
  ((1111))              ((22))      ((4))  ((31))  ((211))
  ((11)(11))            ((2)(2))
  ((11))((11))          ((2))((2))
  ((1)(1)(1)(1))
  ((1))((1)(1)(1))
  ((1)(1))((1)(1))
  ((1))((1))((1)(1))
  ((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019