A323764 Dirichlet self-convolution of the integer partition numbers A000041.
1, 1, 4, 6, 14, 14, 34, 30, 64, 69, 112, 112, 228, 202, 330, 394, 575, 594, 956, 980, 1492, 1674, 2228, 2510, 3700, 3965, 5276, 6200, 8126, 9130, 12318, 13684, 17842, 20622, 25808, 29976, 38377, 43274, 53990, 62976, 77912, 89166, 110656, 126522, 154918, 179744
Offset: 0
Keywords
Examples
The a(4) = 14 multiset partitions of constant multiset partitions: ((1111)) ((22)) ((4)) ((31)) ((211)) ((11)(11)) ((2)(2)) ((11))((11)) ((2))((2)) ((1)(1)(1)(1)) ((1))((1)(1)(1)) ((1)(1))((1)(1)) ((1))((1))((1)(1)) ((1))((1))((1))((1))
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
Comments